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Statistical mechanics of fluids under internal constraints:
Rigorous results for the one-dimensional hard rod fluid

David S. Corti* and Pablo G. Debenedetti†

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
~Received 24 April 1997!

The rigorous statistical mechanics of metastability requires the imposition of internal constraints that prevent
access to regions of phase space corresponding to inhomogeneous states. We derive exactly the Helmholtz
energy and equation of state of the one-dimensional hard rod fluid under the influence of an internal constraint
that places an upper bound on the distance between nearest-neighbor rods. This type of constraint is relevant
to the suppression of boiling in a superheated liquid. We determine the effects of this constraint upon the
thermophysical properties and internal structure of the hard rod fluid. By adding an infinitely weak and
infinitely long-ranged attractive potential to the hard core, the fluid exhibits a first-order vapor-liquid transition.
We determine exactly the equation of state of the one-dimensional superheated liquid and show that it exhibits
metastable phase equilibrium. We also derive statistical mechanical relations for the equation of state of a fluid
under the action of arbitrary constraints, and show the connection between the statistical mechanics of con-
strained and unconstrained ensembles.@S1063-651X~98!06804-4#

PACS number~s!: 64.10.1h, 05.20.2y, 05.70.2a, 05.70.Fh
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I. INTRODUCTION

If a liquid is heated above its boiling temperature a
given pressure, while remaining homogeneous, it is said
be superheated. Likewise, a liquid is said to be superco
if, for example, it is cooled isobarically below its freezin
point without crystallizing. These are examples of metasta
liquids, which play an important role in both nature and tec
nology. Examples include sap ascent in trees under ten
@1#, supercooled water in clouds@2#, mineral inclusions@3#,
phase separation in polymer mixtures@4#, explosive boiling
@5#, cavitation in turbulent flow@5,6#, and the initial stage of
sonoluminescence experiments involving cavitation, ow
to ultrasonic excitation@7#. In many of these cases, know
edge of the thermophysical properties of a metastable sys
is important. For example, the prevention of vapor exp
sions@8–10# requires an accurate knowledge of the equat
of state of superheated liquids and their mixtures.

Despite the importance and ubiquity of metastability, fu
damental questions remain concerning the development
rigorous, microscopically based understanding of this p
nomenon@3#. The application of conventional statistical m
chanics to the prediction of the properties of metastable
tems has an important limitation: a metastable state is n
a condition of maximum entropy for an isolated system, a
hence it is never the dominant~and, in the thermodynamic
limit, sole! contribution to the partition function. In the the
modynamic limit, a rigorous evaluation of the partition fun
tion within the coexistence region would yield no inform
tion on metastable states@11#. In fact, the partition function,
if evaluated inside the coexistence region, would produce
inhomogeneous state~e.g., equilibrium mixture of liquid and
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vapor phases!. An exception to this statement is given by th
idealized system of Refs.@12,13#, which has an infinitely
long-ranged attractive potential.

In commonly used approximate theories, metastable st
appear exclusively as a result of the mathematical appr
mations used to ‘‘solve’’ the partition function. For exampl
in applying the maximum term method@11#, one generally
seeks the homogeneous~single! density that maximizes the
generic term in the partition function. If the artificial con
straint of strict uniformity were removed, the maximum ter
method, which is exact in the thermodynamic limit, wou
yield only an equilibrium, inhomogeneous mixture of two
more phases. Metastable and unstable states are thus
tained in mean-field treatments, such as the Bragg-Willia
or van der Waals theories@11#, by forcing the density to be
strictly uniform even inside the coexistence region.

Are there, therefore, rigorous ways of calculating t
properties of a metastable system? To answer this ques
we seek guidance from experiments. In the laboratory,
way to study a metastable system is to constrain it so a
make its lifetime much longer than the observation time. O
technique for accomplishing this consists of creating
emulsion of small droplets of a liquid in a second, imm
cible host liquid. This technique is commonly applied
study both supercooled and superheated liquids@14,15#. The
sample liquid is carefully purified to remove suspended
dissolved impurities that can trigger a phase transition. S
division and purification will thus cause the number of dro
lets to be large compared to the number of residual imp
ties. Therefore, a large fraction of the droplets can
maintained in metastable equilibrium. Furthermore, the
mogeneous nucleation rate is proportional to the samp
volume. Hence subdivision again facilitates extensive p
etration into the coexistence region. From this example
conclude that a metastable system can be studied so lon
embryos of a new phase do not have enough time to form
the course of an experiment. Therefore, in order to calcu
the properties of such a system rigorously, we must const

y,
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the evaluation of the partition function so as to limit th
exploration of phase space to regions in which configurati
containing large enough nuclei of stable phases are ab
Generalizing, we say that the rigorous statistical mecha
of metastability is the statistical mechanics of constrain
systems@16#. Note that this rigorous, microscopic constra
allows for density fluctuations, and is very different from t
assumption of strict uniformity inside the coexistence regi

Experimental constraints are kinetic, and they are aim
at avoiding nucleation. In statistical mechanics, the c
straints are time independent, and they consist of block
access permanently to certain regions of phase space.
doing, the system is contained within the appropriate o
phase region of its phase space, despite being inside the
existence region of its phase diagram. However, the rigor
evaluation of the partition function over limited regions
phase space~i.e., the rigorous imposition of a constraint! is
impossible except for highly idealized systems~e.g., Refs.
@12,17#!. Computer simulations, therefore, can play a ve
useful role in the rigorous study of metastability. This
because constraints are easily imposed in simulations.
application of molecular simulations has only started to
ceive the attention it merits~e.g., Refs.@18–21#!. In these
references, the analytical constraints investigated in
work are studied computationally, by imposing limits on t
size of voids that are allowed to form in a superheated liqu
In particular, Ref.@20# discussed a one-dimensional syste
albeit one in which attractions have a finite range.

The analytical study of simple systems, however, is
without benefits. This is especially true when exact solutio
are possible, which allow one to investigate, without a
proximations, the effects of constraints on the thermodyna
ics and structure of a model system. In this paper, we ana
one such simple system, the one-dimensional hard rod fl
~see, e.g., Ref.@22#!. In particular, we determine exactly th
effect of a particular constraint on its equilibrium propertie
The one-dimensional hard rod fluid, however, does not
hibit a first-order phase transition. Therefore, its usefuln
in understanding the properties of metastable liquids is l
ited. We are interested in analyzing the properties of a s
tem that is inside the coexistence region and is preven
from phase separating~remains homogeneous! by applica-
tion of a suitable microscopic constraint. Upon addition of
infinitely weak and infinitely long-ranged attractive tail, th
one-dimensional hard rod fluid exhibits a first-order pha
transition between a liquid phase and a vapor phase@23#.
Therefore, we also derive the equation of state of a hard
fluid with an infinitely weak and infinitely long-ranged a
tractive potential, and determine exactly the ways in wh
the constraint influences the equilibrium properties of
one-dimensional superheated liquid.

The paper is organized as follows: in Sec. II we der
rigorous statistical mechanical relations for the equation
state and chemical potential of a fluid under the action o
constraint. We find that the conventional, unconstrained
tistical mechanical formalism is in fact a subset of the sta
tical mechanics of constrained ensembles. In Sec. III we
tain the Helmholtz energy and equation of state of the o
dimensional constrained hard rod fluid in which a str
upper bound is placed on the distance between nearest n
bors. We discuss the effect of the constraint on the equ
s
nt.
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rium properties and internal structure of the hard rod fluid.
Sec. IV, we determine the equation of state of the o
dimensional hard rod fluid with an infinitely weak and infi
nitely long-ranged attractive potential. We discuss the res
ing phase equilibrium properties and metastable sta
predicted by the model. In Sec. V we summarize and sug
directions for future work.

II. RIGOROUS RELATIONS FOR INTERNALLY
CONSTRAINED ENSEMBLES

In this section we derive rigorous statistical mechani
expressions for the equilibrium properties of constrained s
tems, some of which were previously discussed in Ref.@21#.
These results are applicable not only to metastable syst
~which are prevented from phase separating! but to any sys-
tem under the action of a constraint. In so doing, we der
equations that are in fact more general than the result
conventional, unconstrained statistical mechanics, to wh
they reduce in the limit of arbitrarily weak constraints.

In order to reformulate the canonical ensemble to obt
metastable states, one must employ a mathematical devi
trap the system in the appropriate region of phase space.
activation barrier that must be surmounted before a m
stable state can phase separate corresponds to a bimoda
the canonical probability distribution. Within the coexisten
region, this distribution is composed of two virtually distin
and nonoverlapping regions of phase space. The ‘‘bot
neck’’ region between them, corresponding to the appe
ance of a critical embryo within the metastable fluid, has
low probability of occupation, at least for small degrees
metastability. Thus the reformulation of the canonical e
semble requires the closing of the bottleneck via the impo
tion of a configurational constraint, trapping the syste
within the desired region of phase space. This constraint
be attained in principle by imposing an additional interm
lecular or external potential@24# on the system. This poten
tial WN should vanish in the appropriate one-phase region
phase space, but becomes arbitrarily large in that par
phase space that corresponds to the existence of two or m
phases in equilibrium.

The choice ofWN will be determined by the metastab
phase of interest. In a supercooled vapor,WN must become
large if clusters beyond a given size develop. Likewise,WN
should serve to frustrate the formation of large voids or ca
ties within a superheated liquid@19,21#. Supercooled liquids
must be free of large crystallites, soWN must prevent their
formation.

Irrespective of the form ofWN , one can write the parti-
tion function of a constrained system ofN particles, in a
volumeV ~or its d-dimensional generalization!, and at a tem-
peratureT as follows@25#:

Q~N,V,T!5
Z~N,V,T!

N!LdN , ~1!

whereL is the de Broglie wavelength andZ(N,V,T) is the
configurational integral given by

Z~N,V,T!5E ¯E dr1 ...drNe2bFNe2bWN ~2!
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in which b51/kT, k is Boltzmann’s constant, and the inte
gral overdr i spans the system volume.FN is the instanta-
neous configurational energy and is a function of all theN
particle coordinates. Although the discussion is limited
atomic systems for simplicity, the generalization to molec
lar systems is straightforward.

Noting that the Helmholtz energyA is equal to@25#

A~N,V,T!52kT lnQ~N,V,T! ~3!

and

P52S ]A

]VD
T,N

5kTS ] lnZ~N,V,T!

]V D
T,N

, ~4!

then the pressureP is given by@21#

P

kT
5r2

r2

2dkT E
0

`

rf8~r !g~r !dr1br2K S ]WN /N

]r D
T,N

L ,

~5!
on
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-

wherer5N/V, g(r ) is the radial distribution function of the
constrained system, and^¯& denotes ensemble averagingin
the constrained system. Equation~5! is exact for pairwise
additive interactions,

FN5 (
1< i , j <N

f~r i j !, ~6!

where f(r i j ) is the pair potential energy between atomsi
and j . Equation~5! is obtained in the usual way@25# by
rescaling the particle coordinates

s5V21/dr . ~7!

The integrations in Eq.~2! then span a unit cube ins space,
thereby allowing the volume derivatives required by Eq.~4!
to be carried out by the chain rule. The result is given by E
~5!, in which @21#
K S ]WN /N

]r D
T,N

L 5

E
0

1

ds1¯E
0

1

dsNe2b~FN1WN!
]

]V
WN~V1/ds1 ...V1/dsN!

E
0

1

ds1¯E
0

1

dsNe2b~FN1WN!

. ~8!
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The pressure of an unconstrained system would include
the first two terms in Eq.~5!, but g(r ) would be evaluated
with WN50.

Equation ~5! shows that the configurational constrai
makes an additional contribution to the system pressure
is not present in unconstrained systems. Interestingly,
second, virial term in Eq.~5! is not sufficient to determine
the pressure of the constrained system. This is so even i
virial is dependent upon the structure of the constrained
tem through the radial distribution functiong(r ), which is
altered by the addition ofWN . Consequently, there is a
additional microscopic contribution to the system pressu
solely from the addition of a constraint, which is not com
pletely accounted for by the virial.

Let us rewrite Eq.~5! as follows:

P5Pideal1Pvirial1Pconstraint, ~9!

in which Pideal5rkT,

Pvirial52
r2

2d E
0

`

rf8~r !g~r !dr , ~10!

and

Pconstraint5r2K S ]WN /N

]r D
T,N

L . ~11!

The magnitude and sign ofPconstraint is dependent upon th
form of WN . We will see in the following sections that whe
ly

at
e

he
s-

e,

the distance between nearest neighbors in a one-dimens
hard rod fluid is prevented from exceeding some speci
value, Pconstraint<0, and its magnitude can become qu
large for certain densities. Even though the internal struct
of this constrained hard rod fluid is dramatically altere
Pvirial is unable to account properly for the system pressu
At certain densities,Pconstraintis the dominant contribution to
the pressure and, in fact, the total pressure becomes nega
Within a system composed of purely repulsive interactio
the constraint manifests itself as an additional long-ran
attraction, allowing the hard rod fluid to exist under tensio

The pressure is not the only thermodynamic varia
which contains a term that is solely dependent upon the c
straint. Due to the additional Boltzmann factor associa
with WN in the partition function, one realizes that oth
statistical mechanical expressions must be modified to
count for contributions from the constraint. For example,
chemical potentialm of an unconstrained system is given b
@11#

m5kT ln rLd1rE
0

1E
0

`

f~r !g~r ;z!dr dz, ~12!

wheref(r ) is the intermolecular potential between two pa
ticles separated by a distancer , and z(0<z<1) is a cou-
pling parameter. This parameterz simply scales the strengt
of interaction between a given particle and all other partic
in the fluid by a factorz. In terms of this coupling paramete
then,
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FN5(
j 52

N

zf~r 1 j !1 (
2< i , j <N

f~r i j ! ~13!

wherez alters the magnitude of the interaction between p
ticle 1 and the remainingN21 particles. Note that particle 1
is completely removed from the system whenz50, and is
completely coupled to the remainingN21 particles when
z51. For a constrained system, the corresponding exp
sion for the chemical potential becomes

m5kT ln rLd1rE
0

1E
0

`

f~r !g~r ;z!dr dz1E
0

1K ]WN

]z L dz.

~14!

Thus, as was the case with the pressure, constraints intro
new terms, in addition to imposing the need to evaluate
isting terms in the constrained ensemble.

Carrying out the usual manipulations@25#, but now in the
presence of a constraint, it follows that the isothermal co
pressibility kT , and the configurational energyU, are for-
mally identical to the corresponding unconstrained expr
sions, except thatg(r ) is to be evaluated in the constraine
system:

rkTkT511rE
0

`

@g~r !21#dr , ~15!

U

N
5

r

2 E
0

`

f~r !g~r !dr . ~16!

Equation~16! is valid for pairwise additive interactions.

III. ONE-DIMENSIONAL CONSTRAINED HARD
ROD FLUID

A. Nature of the constraint

The motivation behind studying the one-dimensional h
rod fluid is the possibility of solving the equation of state
a constrained system exactly. Since we are ultimately in
ested in studying the properties of a metastable system
particular a superheated liquid, we require a constraint
will prevent the liquid from boiling. This can be imple
mented by preventing the liquid from sampling configu
tions that contain large voids. For a one-dimensional flu
this is realized by placing a strict upper bound on the d
tance allowed between nearest neighbors.

Elkoshi, Reiss, and Hammerich@17# studied the effect of
a constraint on the properties of the one-dimensional h
rod fluid. These authors analyzed the properties of the h
rod fluid in which the concentration of holes was held fixe
where the size of a ‘‘hole’’ was defined as the number
additional hard rods which could be placed between nea
neighbors without overlap and without disturbing the ori
nal configuration. By limiting the total size of all holes a
lowed to form, their ‘‘internally constrained’’ ensemble e
hibited dramatic structural changes and was able to e
under tension~i.e., negative pressure!. In contrast, the con-
straint used in this work is better suited to study syste
which are metastable with respect to the formation of a n
phase. Our constraint is more restrictive than that of R
r-

s-

ce
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rd
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f
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st

s
w
f.

@17# since we are limiting the range of distances betwe
nearest neighbors, and should prevent the one-dimensi
liquid from boiling. The constraint used in Ref.@17# fixes the
mean distance between neighbors, or the concentratio
holes, and hence is not severe enough to prevent cavita

The study of the effect of constraints on the properties
the hard rod fluid is not limited to the work of Ref.@17#.
Davis and co-workers studied the statistical mechanics of
one-dimensional hard rod fluid under the influence of ext
nal fields@22#, and used this as a model system to investig
the properties of fluids confined within narrow pores. T
application of an external field is equivalent to the impositi
of a constraint, but the nature of this constraint is quite d
ferent from that used in the present work~and in Ref.@17#!.
We impose an internal constraint~i.e., one that depends o
the relative positions of the particles!, as required by the
physical situation we are interested in, metastability. T
constraint studied by Davis and co-workers is external~e.g.,
confining walls!, as befits the study of confined and inhom
geneous fluids.

For a one-dimensional hard rod fluid in which the ‘‘diam
eter’’ ~i.e., length! of a particle isa, placing a limit on the
distance between nearest neighbors corresponds to a
straintWN that can be written as follows:

WN5kT(
i 51

N

h~xi 112xi !, ~17!

where xi is particle i ’s distance from the origin andxN11
5x1 ~i.e., periodic boundary conditions!. The position of a
particle,xi , is that of its center of mass. For each config
ration of hard rods, the particles are labeled from 1 toN
according to their distance from the origin~xi 11>xi for all
i !. The step functionh(xi 112xi) is equal to

h~xi 112xi !5 H 0,
`,

xi 112xi< la
xi 112xi. la, ~18!

where l>1. Thus, the length between adjacent hard rods
limited to distances smaller or equal tola. In the limit l
→`, WN vanishes, and the system becomes unconstrain

B. Derivation of the Helmholtz energy

If we haveN hard rods of lengtha in a ‘‘box’’ of length
L, held at a temperatureT, the Helmholtz energyA can be
written as

A~N,L,T!52kT ln
ZN

N!LN , ~19!

whereZN is again the configurational integral@Eq. ~2!# given
by

ZN5E
0

L

¯E
0

L

dx1 ...dxNe2bFNe2bWN, ~20!

in which FN is the total potential energy andWN is the
constraint.FN is given by the sum of two-body interaction

FN5 (
1< i , j <N

f~xi2xj !, ~21!



-
in
ra
l
is
e
ef
e

w
t f
s

es
he
r o
t n
th

e

e
o

ig

ic

of
e
er

re

f
d

ce
t
on
xi-

le
aals
hod
e
t-
stable
tion
ho-
erm

of

eas-

for

57 4215STATISTICAL MECHANICS OF FLUIDS UNDER . . .
where the summation runs over allN(N21)/2 pairs, andf
is the intermolecular potential between hard rodsi and j ,

f~xi2xj !5 H`,
0,

xi2xj,a
xi2xj>a. ~22!

The specific form ofWN andFN suggests that we evalu
ateZN such that the particle labels are arranged in increas
order from the origin. Therefore, the configurational integ
ZN is simplyN!ZN8 , whereZN8 is the configurational integra
in which the particle coordinates are constrained to sat
0<x1<x2<¯<xN @26#. This transformation is not possibl
in higher dimensions. Following the method outlined in R
@17#, ZN8 can be evaluated if we discretize all the distanc
between adjacent particles in terms of a quantumu which
will become zero as we pass to the continuum limit.u is
chosen such that the number of quanta in the lengtha of a
rod is simply an integerv. Therefore,a5vu, and so the
number of quanta in the lengthL is given byG5L/u.

In order to describe a configuration, it suffices to kno
the distance between each nearest-neighbor pair. In wha
lows we find it convenient to describe a configuration in le
detail, by focusing on the frequency of occurrence of near
neighbor separations of a given magnitude but not on t
location. We are interested, in other words, in the numbe
nearest-neighbor distances having a particular length, bu
on the identities of the pairs that are so connected. In
spirit, let us denote byglu the number of intervals of length
l between adjacent particles in a given configuration, wh
l is the number of quantau between two particles. Thusgl

is a linear density andu becomes a differential length. Du
to the nature of the hard rod potential and the imposed c
straint,l is constrained to lie in the rangev<l< lv, where
la is the maximum allowed distance between nearest ne
bors @Eq. ~17!#. Each configuration which contributes toZN8
can be characterized by a unique set of numbersglu. The
number of distinct arrangements corresponding to a part
lar distribution ofglu is given by

V5
N!

Pl~glu!!
, ~23!

where N in the numerator is simply the total number
spaces between the rods. However, any arbitrary choic
the numbersglu is not permissible. Since the total numb
of spaces between the rods is fixed, we must have

(
l5v

lv

glu5N. ~24!

Likewise, since the total length must be conserved, we
quire

(
l5v

lv

l~glu!5G. ~25!

The Helmholtz energy now becomes

A~N,L,T; l !52kT ln
uN(8V

LN , ~26!
g
l

fy

.
s

ol-
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whereA is now explicitly a function ofl , and(8 runs over
all possible choices of the set of numbersglu satisfying Eqs.
~24! and~25!. The quantityuN is a result of the evaluation o
ZN8 in terms of the quantumu, where the integral is evaluate
over the scaled coordinates,xi85xi /u, in which

dxN5uNd~x8!N, ~27!

and 0<x8<G.
Since we are in the thermodynamic limit, we can repla

(8V by its maximum termV* . A clarification is needed a
this point. The maximum term method, in which the partiti
function is set equal to its largest contribution, is an appro
mation that becomes exact in the thermodynamic limit~N
→`; L→`; N/L5const!. The appearance of metastab
states in approximate theories, such as the van der W
equation, is not due to the use of the maximum term met
for the evaluation of a partition function. Rather, it is th
artificial imposition of a uniform density inside the coexis
ence region that causes the appearance of these meta
states. The unconstrained evaluation of the partition func
inside the coexistence region would of course yield an in
mogeneous equilibrium state even when the maximum t
method is used.

The equilibrium distribution ofglu, that gives usV* , is
therefore determined by maximizingV, with respect toglu,
subject to the constraints in Eqs.~24! and ~25!. Using the
method of undetermined multipliers, we find that the set
numbersglu is given by

glu5Kal. ~28!

We notice from Eq.~28! that if KÞ0, thena<1, otherwise
glu would diverge asl→` ~i.e., l→`!. The parametersK
anda are determined by substituting Eq.~28! into Eqs.~24!
and~25!. The sums are simple geometric series and are
ily evaluated@27#. The results are as follows:

K5
N~a21!

av~av~ l 21!1121!
, ~29!

G

Nv
5

L

Na
5

1

12av~ l 21!112
lav~ l 21!11

12av~ l 21!11

1
a~12av~ l 21!!

v~12a!~12av~ l 21!11!
. ~30!

At this point, we pass to the continuum limit, allowingu to
approach zero andv to approach infinity. From Eq.~30! it
can be shown that ifa does not differ from unity by an
infinitesimal amount, thenL/Na will always be unity. Since
we know that a system of hard rods can be constructed
L/Na,1, then, in the continuum limit,a must be of the
following form:

a512e→1, ~31!

wheree is an infinitesimal. Thus

av5~12e!v5e2j, ~32!
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in which j5ev, and e2j is the limiting expression ofav

when v goes to infinity whilee is infinitesimal. It will be
shown later@see Eq.~44!# thatj is a dimensionless pressur

Substituting the above relations into Eqs.~29! and ~30!,
and lettingv→` (j5const) yields the final results

K5
Neej

12e2j~ l 21! , ~33!

ra5
Na

L
5

j~12e2j~ l 21!!

11j2~ l j11!e2j~ l 21! , ~34!

where r is the number density andj is completely deter-
mined oncer andl are specified (j5j@r,l #). For an uncon-
strained system (l→`),

j5
ra

12ra
. ~35!

Since the distance between hard rods must lie withina and
la ( l>1), the density is constrained to lie in the followin
range:

1

l
<ra<1. ~36!

Equation ~34! indicates that asj→`, ra→1; and as
j→2`, ra→1/l . In the limit asj→0, ra→2/(l 11).

If we define a variablex such thatx5lu, then Eq.~28!
can be rewritten as

g~x!

N
5

je2j~x2a!/a

a@12e2j~ l 21!#
, ~37!

wherex has units of length and is the distance between h
rods. Consequently, Eq.~37! is simply the probability den-
sity distribution function that nearest neighbors are separ
by a distancex, sinceg(x)/N has units of inverse length an

E
a

la g~x!

N
dx5E

a

la je2j~x2a!/a

a@12e2j~ l 21!#
dx51. ~38!

Finally, by substituting Eq.~28! into Eq. ~26!, we obtain
the Helmholtz energy per particleã

A~N,L,T; l !

NkT
5

ã~r,T; l !

kT
52 ln

a@12e2j~ l 21!#

jL

2
j~12ra!

ra
, ~39!

where ã is now explicitly a function ofr, T and l . If l
→`, then the Helmholtz energy per particle becomes

ã~r,T!

kT
52 ln

12ra

rL
21, ~40!

which equals the known result for an unconstrained hard
fluid in one dimension@26#. Therefore, the difference in
Helmholtz energy between a constrained system and an
constrained system is
rd

ed

d

n-

Dã

kT
5

ã~r,T,l !

kT
2

ã~r,T,l→`!

kT

52 ln
ra@12e2j~ l 21!#

~12ra!j
2

j~12ra!

ra
11 .

~41!

The imposition of the constraint causes an increase in
Helmholtz energy, sinceDã/kT>0. Note thatDã/kT→0
for l→` as expected. Typical plots ofDã/kT for various
values ofl are shown in Fig. 1. We see thatDã/kT→0 for
r→1, indicating that at the limit of close packing, whe
voids cannot form, the system is insensitive to the impo
constraint and behaves as if it were unconstrained. On
other hand, forra→1/l , Dã/kT→`. At this limiting den-
sity, the system is stretched to the maximum limit allowed
the constraint.

C. Equation of state

The Helmholtz energy per particle,ã, is an explicit func-
tion of T, r, andl . Noting thatã @Eq. ~39!# is also expressed
in terms ofj, then its differential change can be written a

dã5S ]ã

]TD
r,l ,j

dT1F S ]ã

]r D
T,l ,j

1S ]ã

]j D
T,l ,r

S ]j

]r D
l
Gdr

1F S ]ã

] l D
T,r,j

1S ]ã

]j D
T,r,l

S ]j

] l D
r
Gdl. ~42!

Using Eq.~39!, it can be shown that (]ã/]j)T,r,l50. There-
fore, the system pressureP is equal to

P

kT
5r2S ]ã/kT

]r D
T,l

5r2S ]ã/kT

]r D
T,l ,j

, ~43!

FIG. 1. Density dependence of the difference in the Helmho
energy per particle between a constrained and unconstrained
dimensional hard rod system, for various values of the severity
the constraint,l . r is the number of rods per unit length,a is the
length of a rod, and the maximum allowed distance between cen
of neighbor rods isla.
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which, together with Eq.~39!, yields

Pa

kT
5j. ~44!

Thus we immediately see that the pressure of the constra
hard rod fluid can have values in the following range:

2`<
Pa

kT
<`. ~45!

The pressure is zero whenj50, corresponding to a densit
of ra52/(l 11) @see Eq.~34!#. For comparison, the pressu
of the unconstrained system is

aPunc

kT
5

ra

12ra
, ~46!

which is always greater than or equal to zero. As long asl is
finite, there is a range of densities

1

l
<ra,

2

l 11
, ~47!

in which the constrained hard rod fluid is under tension. F
ure 2 shows some typical plots of the pressure versus de
for several choices of the constraint. The unconstrained
tem, in which only repulsive interactions exist, can nev
exist at a negative pressure. As the constraint is weake
~l becomes larger!, the properties of the constrained flu
approach those of the corresponding unconstrained syst

It was shown in Sec. II that the pressure of the constrai
system is the sum of three contributions

P5Pideal1Pvirial1Pconstraint, ~48!

in which

FIG. 2. Equation of state of the one-dimensional hard rod fl
for several choices of the severity of the constraint,l . Notation as
per Fig. 1.
ed

-
ity
s-
r
ed

.
d

Pconstraint5r2K S ]WN /N

]r D
T,N

L . ~49!

Now, P is known exactly@Eq. ~44!#, andPideal5rkT. Fur-
thermore, it will be shown in Sec. III E that the radial distr
bution function can be calculated exactly, and hence, thro
Eq. ~10!, so canPvirial . Therefore,Pconstraintcan be obtained
exactly. We find that

Pconstraint

kT
52

r l je2j~ l 21!

12e2j~ l 21! , ~50!

which, from comparison with Eq.~37!, is equivalent to

Pconstraint

kT
52r laP1~ la2!. ~51!

P1(x) is the probability density that nearest neighbors
separated by a distancex, which we saw in Sec. III B was
equal tog(x)/N @Eq. ~37!#. P1( la2) signifies the limit of
P1(x) as x→ la from the left. Since by definition of prob
abilities P1( la2)>0, we conclude thatPconstraint<0 at all
densities. Figure 3 shows a plot ofPconstraintversusra for l
52. Included in the plot is the total pressureP, and the
remaining contribution to the pressure,Pideal1Pvirial . We see
that for high densities, when the average intermolecular
tance is much less thanl , Pconstraint'0. However, as the den
sity approaches 1/l , the magnitude ofPconstraintincreases and
becomes the dominant contribution to the pressure. S
Pideal1Pvirial>0, it is Pconstraint which is responsible for al-
lowing the hard rod fluid to exist under tension~i.e., negative
pressure!.

D. Other thermodynamic variables

Since the Helmholtz energy is now a function ofT, L, N,
and l , its differential change can be expressed as

dA52SdT2PdL1mdN1xdl, ~52!

d FIG. 3. Density dependence of the various contributions to
pressure forl 52.
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whereS is the entropy,m the chemical potential, andx is
defined by

x[S ]A

] l D
T,N,L

. ~53!

Using Eq.~39!, we find that

x

NkT
5

2je2j~ l -1!

12e2j~ l 21! <0. ~54!

A decrease inl , or an increase in the severity of the co
straint, will always cause an increase in the value of
Helmholtz energy. We see thatx/NkT→2` as the density
approaches its minimum value 1/l .

Noting that the entropyS is related toA by

S52S ]A

]TD
N,L,l

, ~55!

one finds that

S

Nk
5

1

2
1 ln

a@12e2j~ l 21!#

jL
1

j~12ra!

ra
. ~56!

Therefore,

S ]S/Nk

] l D
T,r

5S ]S/Nk

] l D
T,r,j

1S ]S/Nk

]j D
T,r,l

S ]j

] l D
r

52
x

NkT
>0, ~57!

where it can be shown that@](S/Nk)/]j#T,r,l50. As ex-
pected, an increase in the severity of the constraint~a de-
crease inl ! yields a decrease in the entropy.

Invoking a Maxwell relation

S ]S

]L D
T,N,l

5S ]P

]T D
L,N,l

5
aP

KT
, ~58!

whereaP andKT are the thermal expansion coefficient a
isothermal compressibility, respectively, defined by

aP[
1

L S ]L

]TD
P,N,l

, ~59!

KT[2
1

L S ]L

]PD
T,N,l

, ~60!

then we find, using Eq.~56!, that

S ]S/Nk

]r D
T,l

5
2j

ar2 , ~61!

and, therefore,

TaP

kTKT /a
5j. ~62!
e

SinceKT>0, one obtains the interesting result thataP<0
for j,0, or for 1/l<ra<2/(l 11). In other words, the con
strained hard rod fluid will expand when cooled isobarica
within this density range. In contrast, the thermal-expans
coefficient of the unconstrained system is

TaP512ra>0, ~63!

indicating that the unconstrained system always contra
when cooled isobarically.

Equation~63! also reveals that the entropy of the unco
strained system never exhibits a maximum with respec
the density. However, this is not so for the constrained s
tem@Eq. ~61!#. For densities lower than 2/(l 11), an increase
in density causes an increase in entropy. At the minim
allowed density, the hard particles are only allowed to ex
in a single conformation~i.e., all particles are separated fro
each other by a distance equal tola!. As the density in-
creases, additional configurations become accessible
therefore, the entropy must increase. On the other hand
the limit of close packing (ra51), the hard rods again hav
only one allowed conformation~i.e., all particles are in con-
tact, separated by a distancea from one another!. Therefore,
at some density between these two limits, the entropy m
reach a maximum, which, from Eq.~61!, occurs when the
pressure is zero (j50) or at ra52/(l 11). Figure 4 dis-
plays a plot ofS/Nk versusra for various values ofl .

E. Radial distribution function

Restricting the maximum allowed distance between ne
est neighbors is equivalent to constraining the maximum s
of voids allowed in the hard rod fluid. We have already se
how sensitive the thermophysical properties are to the siz
the maximum allowed void. We now consider the effect
the constraint on the internal structure of the fluid.

FIG. 4. Density dependence of the entropy of the on
dimensional hard rod fluid for various values of the severity of
constraint,l . For each choice ofl , the entropy maximum occurs fo
ra52/(l 11). S0(T)/Nk5 ln L/a, which is a function of tempera-
ture only. Notation as per Fig. 1.
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When the system is unconstrained (l→`), the nearest-
neighbor distribution function@Eq. ~37!# is given by

aP1~x!5
ra

12ra
e2~x2a!r/~12ra!, ~64!

in which x>a. However, when a limit is placed on the siz
of voids in the fluid, the nearest-neighbor distribution fun
tion becomes

aP1~x!5 H je2j~x2a!/a

12e2j~ l 21! , a<x< la

0, x. la.

~65!

The severe nature of the imposed constraint is evident by
immediate discontinuity@aP1(x)50 for x. la#, which is
imposed on the unconstrained nearest-neighbor distribu
function. Subsequently, if the constraint were eliminat
then the hard rod fluid would irreversibly move toward
unconstrained state; the probability that the system would
the future, return to its original constrained state is ess
th
-

he

n
,

in
n-

tially zero. Therefore, the constrained hard rod fluid is in fa
‘‘metastable’’ @17#.

Using Eq.~65!, it is possible to determine the distributio
function for the second-nearest neighbor,P2(x). If the sys-
tem were unconstrained, thenP2(x) is simply @17#

P2~x!55
0, x,2a

E
a

x2a

P1~x2x8!P1~x8!dx8, 2a<x<2la

0, x.2la.
~66!

However, in the constrained system,x8 can no longer range
from a to x2a for any choice of x. For example, if
x.( l 11)a, thenx8, the distance between one pair of nea
est neighbors, cannot equala since the distance between th
adjacent pair of nearest neighbors,x2x8, would violate the
constraint, exceeding the maximum allowed value ofla.
Thus, P2 for the constrained system must be evaluated
follows:
P2~x!55
0, x,2a

E
a

x2a

P1~x2x8!H~x2x82 la !P1~x8!H~x82 la !dx8, 2a<x<2 ja

0, x.2la,

~67!

where

H~y2 la !5 H1,
0,

y< la
y. la. ~68!

H ensures that the distances between nearest neighbors in Eq.~67! never exceedsla.
In general, thej th nearest-neighbor distribution functionPj (x) is equal to

Pj~x!55
0, x, ja

E
~ j 21!a

x2a

P1~x2x8!H~x2x82 la !Pj 21~x8!H~x82 la !dx8, ja<x< j la

0, x. ja.

~69!
By repeated application of the convolution theorem for
Laplace transform of Eq.~69!, we find, with t5x2 ja, that

Pj~ t1 ja !5L21L@P1~ t1a!H~ t1a2 la !# j , ~70!

in which L denotes the Laplace transform,L21 the inverse
transform, and

L@P1~ t1a!H~ t1a2 la !#

5E
0

`

e2stP1~ t1a!H~ t1a2 la !dt. ~71!

In arriving at Eq.~70!, the following relation was used:

L@Pj~ t1 j la !#50, ~72!

where, by definition,Pj (t1 j la )50 for t>0.
e The radial distribution functiong(x) is given by@17#

rg~x!5(
j 51

`

Pj~x!, ~73!

which is evaluated by repeated application of Eq.~70!. If we
let x* 5x/a, thenPj (x) is given by

aPj~x* !5
j je2j~x* 2 j !

@12e2j~ l 21!# j~ j 21!!

3 (
k50

j 21

~21!k
j !

k! ~ j 2k!!
@x* 2 j 2k~ l 21!# j 21

3 f @x* 2 j 2k~ l 21!# ~74!

for j <x* < j l , in which
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f ~y!5 H0,
1,

y,0
y>0. ~75!

Note that asl→` only the k50 term survives and we re
cover the correct radial distribution function of the unco
strained hard rod fluid@26#, where

aPj~x* !5
~ra! je2ra~x* 2 j !/~12ra!

~12ra! j~ j 21!!
@x* 2 j # j 21 ~76!

for x* > j .
Figures 5 and 6 show plots ofg(x* ) for various values of

l at a density ofra5 1
2 . The drastic effects of the constrain

on the fluid’s internal structure are clearly shown. Lets(x* )
be defined as follows (b51/kT):

g~x* ![e2bs~x* !. ~77!

Then s(x* ) is the potential of mean force@25#, whose de-
rivative yields the force between two hard rods located
distancex* apart, averaged over all possible configuratio
of the other N22 hard rods. Therefore, the slope
2kT ln g(x* ) is the mean force required to hold two pa
ticles fixed at a distancex* . Note thats(x* ) is not just a
function of the intermolecular forces between particles,
includes contributions of forces imparted to hard rods fr
the imposition of the constraint. Figure 5 showsg(x* ) at
ra5 1

2 for l 5` ~unconstrained!, l 55, andl 53. Note that for
l 53 the pressure at this density is zero. We see that forx*
,2 and l 53, g(x* ) has zero slope. Therefore, hard ro
separated by a distance less than two particle diameters
no net force on each other, a result not inconsistent with
system having zero pressure. This is in contrast to the un
strainedg(x* ), which exhibits a negative slope in this inte
val, indicative of the net repulsion between nearest nei
bors. Note that the radial distribution function of ea
constrained system exhibits a discontinuity whenx* 5 l . Fig-

FIG. 5. Radial distribution function of the one-dimensional ha
rod fluid for ra50.5. The pressure of the fluid withl 53 is zero.
Note that there is a discontinuity atx/a55 andx/a53 for l 55 and
3, respectively. unc denotes the unconstrained fluid.
-

a
s

t

ert
e
n-
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ure 6 comparesg(x* ) for an unconstrained system with th
for a fluid under tension (l 52.5). For x* ,2.5, the con-
strained system has a pair correlation function with a posi
slope, indicating net attraction between nearest neighb
when the system is under tension. Figure 6 also shows
longer-ranged correlations that exist in the system under
sion. This illustrates how the constraint manifests itself as
additional potential of considerable range; correlations o
large distances, not seen in the unconstrained fluid,
thereby created in a system with strictly short-ranged in
molecular interactions.

IV. ONE-DIMENSIONAL CONSTRAINED HARD ROD
FLUID WITH ATTRACTIVE POTENTIAL

Although the one-dimensional hard rod fluid is helpful
understanding the equilibrium properties of constrained s
tems, it offers limited insight into the properties of system
that are metastable with respect to a new phase. The
dimensional hard rod fluid, with or without constraints, do
not exhibit a first-order phase transition. This system, ho
ever, can be altered to reveal a first-order transition betw
a liquid phase and a vapor phase. If an infinitely weak a
infinitely long-ranged attractive potential@28# is added to the
hard core, then the one-dimensional hard rod fluid will ha
a two-phase region below a given temperature@23#. One can
therefore limit the maximum size of voids in the hard ro
fluid, thereby preventing the superheated liquid from boilin
and determine the effect of the constraint on the equilibri
properties of the metastable liquid phase. In addition,
compare the equation of state of the superheated liquid w
that predicted by mean-field theory~e.g., the van der Waals
equation of state!.

Lebowitz and Penrose@23# derived the equation of stat
of a system of identical particles interacting with a pair p
tential v(r ) of the following form:

FIG. 6. Radial distribution function of the one-dimensional ha
rod fluid for ra50.5. The hard rod fluid is under tension fo
l 52.5. Note the initial positive slope for the curve forl 52.5 and a
corresponding discontinuity atx/a52.5. unc denotes the uncon
strained fluid.
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v~r !5q~r !1gdf~gr !, ~78!

wherer>0, d is the dimensionality of the system, andq(r )
is a hard-core potential.gdf(gr ) is the ‘‘Kac potential’’
@28#, which is always attractive, andg is inversely propor-
tional to the range of the potential. They showed that in
limit as the attractive potential becomes infinitely lon
ranged and, simultaneously, infinitely weak (g21→`), the
system’s Helmholtz energy per unit volume,â5A/V, is
given by

â~r,T!5EC@ â0~r,T!2âr2#, ~79!

where â0(r,T) is the free energy density of the hard-co
fluid and â is a positive constant denoting the integrat
strength of the attractive potential, defined by

â52 1
2 gdE f~gr !dr , ~80!

in which dr is a differential volume. The symbolEC indi-
cates the convex envelope operator, or the maximal con
function whose value nowhere exceedsâ0(r,T)2âr2.
Since â is positive @f(gr )<0 for r .r o#, the function
â0(r,T)2âr2 need not be convex even thoughâ0(r,T)
must be. Determining the convex envelope of the Helmho
energy per unit volume is identical to performing Maxwel
equal-area construction.

So far we have only discussed the prescription for cal
lating the phase equilibrium properties of the hard-core fl
with an infinitely long-ranged attraction. In fact, Penrose a
Lebowitz @12,13# showed that this system can exist for
very long time in a homogeneous state that is metast
with respect to vapor-liquid phase separation. The proof
volves dividing the volumeV into subcells of sizen. In order
not to violate the condition of homogeneity, the system
constrained to sample only those configurations in which
density in each subcell falls within two bounds,r2 andr1 .
If at a given density (r2,r,r1) the conditions

âo~r!2âr2.EC@ â0~r,T!2âr2#,
~81!

S ]2âo

]r2 D24â.0

are satisfied, then the system is metastable and will rema
for a long time~i.e., a small escape rate!. Penrose and Leb
owitz’s proof that the system can exist in a metastable s
is dependent upon the possibility of dividing the system i
the following length scales

V1/d@g21@n1/d@r o ln~V/r o
d! . ~82!

Equation~82!, in which r o is the hard-core radius, is to b
interpreted in such a way thatV1/d/g21→`, g21/n1/d→`,
andn1/d/r o ln(V/ro

d)→` simultaneously. As before, the sep
ration of the intermolecular potential into short-ranged a
arbitrarily long-ranged components enables one to defin
length scalen1/d, with characteristics that we now discu
@12,13#. Since n is macroscopic, the inequalityn1/d
e

ex

z

-
d
d

le
-

s
e

so

te
o

d
a

n1/d@r o ln(V/ro
d) ensures that there are always enough m

ecules in a subcell to make a violation of the uniform
conditionr2,r,r1 unlikely, guaranteeing that the rate o
phase separation is small. The inequalityg21@n1/d sup-
presses phase transitions within a subcell, since the rang
attractions is now large with respect to the size of a subc
The last inequality,V1/d@g21, ensures that we are dealin
with the thermodynamic limit, which satisfies the conditio
that if the metastable state were to phase separate, it w
have a negligible probability of returning to its original stat
Note that Eq.~81! is more restrictive than Maxwell’s pre
scription @13# for obtaining metastable states,

âo~r!2âr2.EC@ â0~r,T!2âr2#,

S ]2âo

]r2 D22â.0, ~83!

which allows the system to exist arbitrarily close to a limit
thermodynamic stability where (]P/]r)T50 ~i.e., spinodal!.
Due to the appearance of 4â in Eq. ~81!, Penrose and Leb
owitz’s requirements for metastability do not allow the sy
tem to approach the spinodal curve. In addition, there i
limited range of subcritical temperatures in which Eq.~81! is
satisfied. As will be shown below, the van der Waals eq
tion of state obeys Penrose and Lebowitz’s metastab
condition only for T<0.765Tc ~supercooled vapor! and
T<0.642Tc ~superheated liquid!, where Tc is the critical
temperature.

A. Phase equilibrium properties

The one-dimensional hard rod fluid exhibits a first-ord
phase transition when a ‘‘Kac potential’’ is added to its ha
core. The equation of state of the system is~we are discuss-
ing phase equilibrium properties only!

â~r,T,l !5EC@ â0~r,T,l !2âr2#, ~84!

whereâ0(r,T,l ) is the free energy density of the constrain
hard rod fluid and is a function of the constraint,l . If we
define a dimensionless temperatureT* 5akT/â, a dimen-
sionless densityr* 5ra, andL* 5L/a, then, upon substi-
tuting Eq.~39! into Eq. ~84!, we find

â* 5ECF2T* r* ln
12e2j~ l 21!

L* j
2T* j~12r* !2~r* !2G ,

~85!

where â* 5âa2/â. If the system becomes unconstrain
( l→`), then

â* 5ECF2T* r* ln
12r*

L* r*
2T* r* 2~r* !2G , ~86!

which is simply the van der Waals equation of state. The v
der Waals equation has a critical point atT* 5 8

27 , r* 5 1
3 ,

and P* 5Pa2/â5 1
27 . It is convenient to reference the tem

perature, pressure, and density of the constrained syste
that of the unconstrained system. Thus let us define a
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duced variableXr5X/Xc , which references the quantityX
in the constrained hard rod fluid to its value at the critic
point for the unconstrained system. Rewriting Eq.~85! in
terms of these reduced variables yields

â* 5ECF28Trr r

81
ln

12e2j~ l 21!

L* j
2

8Trj~32r r !

81
2

r r
2

9 G .
~87!

The reduced pressure then is simply

FIG. 7. Equation of state of the constrained hard rod fluid w
an infinitely weak and infinitely long-ranged attractive potential
various values of the constraint, atTr50.5. The van der Waals
equation is labeled vdw. Note that for values ofl lower than 3.64,
the system does not exhibit a first-order phase transition.Pr , r r ,
and Tr denote the pressure, density, and temperature of the
strained fluid divided by the corresponding value of the same p
erty at the critical point of the unconstrained fluid.

FIG. 8. Equation of state of the constrained hard rod fluid w
an infinitely weak and infinitely long-ranged attractive potential
various values of the constraint, atTr50.8. The van der Waals
equation is labeled vdw. Notation as per Fig. 7.
l

Pr58jTr23r r
2, ~88!

which, in the limit l→`, yields the familiar van der Waals
equation of state

Pr~ l→`!5
8Trr r

32r r
23r r

2. ~89!

Equation~89! is identical in form but not quite equivalent t
the van der Waals equation of state. The van der Waals e
tion is a mean-field expression and therefore yields sta
that are thermodynamically unstable@i.e., (]P/]r)T,0#.
Equation~89!, in accordance with the convex envelope pr
scription @i.e., Eq. ~87!#, never yields unstable states. Th
convex envelope in Eq.~87! can also be determined by inte
grating Eq.~88! according to Maxwell’s equal area constru
tion.

Figures 7 and 8 show the reduced pressure as a func
of the reduced density for various values ofl for Tr50.5 and
0.8, respectively. At these temperatures, the unconstra
system exhibits a first-order phase transition. There i
temperature-dependent critical value ofl , l critical(T), such
that the system may not phase separate if it is more seve
constrained~i.e., l , l critical!. Above this critical value, the
system exhibits a phase transition. Forl . l critical but near
l critical , the two coexisting phases are in equilibrium at neg
tive pressures. This is a rigorously derived example of me
stable phase equilibrium. Figure 9 shows a plot of the inve
of l critical as a function of the reduced temperature. We
that the curve divides the diagram into two distinct regio
phase equilibrium can only occur ifl . l critical ; if l , l critical ,
on the other hand, the system does not exhibit a phase
sition at the given temperature. The temperature-density
pressure-temperature projections of the phase diagram o
constrained hard rod fluid are shown in Figs. 10 and
respectively, for several values ofl . Within each phase en
velope~Fig. 10!, the system may phase separate; outside

n-
p-

FIG. 9. Temperature dependence of the critical value ofl , such
that a phase transition does not occur ifl , l critical . The dashed line
is a numerical extrapolation of the data tol critical

21 →1. Notation as
per Fig. 7.
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this region, the system only exists as a single phase. We
from Fig. 11 that for certain values ofl the hard rod fluid can
only exhibit a first-order phase transition at a negative pr
sure. We can determine the range ofl in which coexistence
occurs between two phases under tension by plot
the value of the reduced critical pressure,Pr ,c@5Pc( l )/
Pc( l→`)#, versus the severity of the constraint,l 21 ~see
Fig. 12!. For l ,8.14, the entire vapor pressure curve of t
constrained hard rod fluid is under tension.

Figures 7 and 8 also include a van der Waals loop at e
temperature. This mean-field equation of state predicts

FIG. 10. Temperature-density projection of the phase diag
of the one-dimensional constrained hard rod fluid with attractive
for various values of the constraint,l . For a particular choice ofl ,
the system does not exhibit a first-order phase transition for va
of the temperature and density outside of the corresponding p
envelope. The dot-dashed line is the predicted mean-field spino
Notation as per Fig. 7.

FIG. 11. Pressure-temperature projection of the vapor-liq
binodal of the one-dimensional constrained hard rod fluid with
tractive tail for various values of the constraint,l . The dot-dashed
line is the predicted mean-field spinodal. Notation as per Fig. 7
ee

s-

g

ch
e

existence of a superheated liquid, which can persist be
the equilibrium pressure of the unconstrained system.
gardless of the value of the constraint, the pressure of
constrained fluid equals that of the unconstrained system
sufficiently high densities. For small values ofl ( l , l critical),
the equation of state of the constrained hard rod fluid exh
its lower pressures, even for densities well within the sta
region. For constraints close tol critical , the constrained fluid
accurately predicts the pressure of the mean-field su
heated liquid but eventually produces higher tensions as
superheated liquid spinodal, as predicted by the van
Waals equation of state, is approached. On the other h
for constraints less severe than the critical value, wh
phase separation can occur, the equation of state of the
strained system represents the pressure of the mean-fiel
perheated liquid accurately up to the density at which
constrained fluid phase-separates.

B. Metastable states

The constrained hard rod fluid with attractive potent
can exist in a metastable state if the conditions given in
~81! are satisfied. Therefore, we are interested in compa
the equation of state of various constrained systems with
equation of state of the superheated liquid in the unc
strained limit (l→`), and the mean-field equation of sta
~van der Waals equation!. The difference between the va
der Waals and unconstrained (l→`) equations is that meta
stability in the latter is defined by Eq. 81, and therefore
occurs only over a limited range of densities inside the
existence region. In the van der Waals equation, on the o
hand, metastability occurs up to the spinodal curve. B
equations of state are identical in the stable region and o
the range of conditions when Eq.~81! is satisfied.~In what
follows, when we refer to the superheated liquid witho
making reference to a constraint, we are talking about
unconstrained superheated liquid.!

To illustrate the consequences of Penrose and Lebow
condition for the existence of metastability@Eq. ~81!#, the

m
il

es
se
al.

d
t-

FIG. 12. Reduced critical pressurePr ,c as a function of the
constraint. The dashed line corresponds to the constraint at w
the critical pressure is zero.
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phase diagram of the unconstrained hard rod fluid with
tractive potential is shown in Fig. 13. The limit of metast
bility is defined by the condition in which Eq.~81! is first
violated, or, equivalently,

S ]Pr

]r r
D

Tr ,l

56r r , ~90!

and

Pr,Pr
eq~Tr ! superheated liquid

Pr.Pr
eq~Tr ! supercooled vapor. ~91!

Beyond this limit it is no longer possible to define singl
phase states with macroscopic lifetimes@12#. Note that this
limit is not the same as the spinodal, where the sys
reaches an absolute limit of stability. For the unconstrain
system, Eq.~90! becomes

Tr5
1
2 r r~32r r !

2. ~92!

There is a maximum temperature for which Eq.~92! is sat-
isfied. Only for Tr,0.765 can the vapor become supe
cooled; the liquid can only be superheated forTr,0.642.
Above these temperatures, the vapor and liquid cannot
main metastable and must phase separate. The metas
regions are therefore bounded by the binodal and the co
sponding vapor and liquid limits of metastability. In Fig. 1
the limit of metastability is shown as a dot-dashed line. N
the contrast between the mean-field prediction, accordin

FIG. 13. Temperature-density projection of the phase diag
of the unconstrained hard rod fluid with attractive tail showing
regions of metastability for the supercooled vapor and superhe
liquid. The regions of metastability are bounded by the bino
~solid line! and the limit of metastability~dot-dashed line!. Equation
~81! is satisfied in this region. The vapor and liquid cannot beco
metastable forTr.0.765 andTr.0.642, respectively. For refer
ence, the spinodal curve~sp! of the van der Waals equation of sta
is included.
t-

m
d

-

e-
ble
e-

e
to

m

ed
l

e
FIG. 14. Temperature-density projection of the phase diag

of the constrained hard rod fluid with attractive tail for vario
values of the constraint,l . Within each phase envelope, the sol
line indicates the limit of metastability, lm, defined by Eq.~81!. The
dot-dashed line is the limit of stability of the unconstrained hard
fluid. Also shown is the mean-field superheated liquid spinodal~sp!.

FIG. 15. The dependence of the critical temperature~top curve!
and the maximum temperature at which the liquid reaches a lim
metastability~bottom curve! upon the severity of the constraint, fo
the constrained hard rod fluid with attractive tail. The dashed li
are extrapolations tol 21→1. There is no phase transition in th
region labeled 1. For any value ofl , phase separation without meta
stability for the superheated liquid@as defined by Eq.~81!# occurs in
the dashed region; metastability is possible in the nondashed re
labeled 2.
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which metastable states can exist arbitrarily close to the c
cal point, and Eq.~81!, which predicts a subcritical uppe
limit to metastability.

In the presence of a constraint, the limit of metastability
determined by the condition

Tr5
3

2
r r S ]r r

]j D
l

, ~93!

which, is of course, a function ofl . Figure 14 again displays
the temperature-density projection of the phase diagram
the constrained hard rod fluid with attractive potential
various values of the constraint,l ~as in Fig. 10!, but also
includes the predicted regions of metastability for vario
values ofl . The locus of limits of metastability of the supe
heated liquid coincides with that of the unconstrained fl
for all choices ofl . The same is not true for the supercool
vapor. Within each superheated liquid region, the press
of each constrained fluid, if the corresponding value of
temperature and density fall inside a phase envelope,
essentially identical. This conclusion cannot be drawn,
general, for values ofl in which the fluid is stable~i.e., the
chosen temperature and density lie outside the phase e
lope for the particular value ofl !, since small values ofl
show significant deviations from the equation of state of
unconstrained system~e.g., Fig. 7!.

Figure 15 shows the dependence of the size of the ph
coexistence and liquid metastable regions on the severit
the constraint. In the figure, the top curve shows how
critical temperature varies with the inverse ofl . The lower
curve displays the highest temperature at which metastab
is possible for the liquid@i.e., Eq.~81! is satisfied# as a func-
tion of l 21. These two curves divide the figure into thre
distinct regions: a region in which only one phase is pres
~labeled 1!, a region in which phase coexistence must oc
~dashed region labeled 2!, and a region in which the liquid
may become superheated~nondashed region labeled 2!.
Clearly, both the superheated liquid and coexistence reg
decrease in size as the constraint becomes more seve
addition, the highest temperature at which the liquid can
ist in the superheated state~bottom curve in Fig. 15! in-
creases withl . Therefore, the limiting temperature of supe
heating for the unconstrained system (l→`) defines a strict
upper bound for all constrained systems. Regardless of
choice of l , constrained liquids can never be superheate
Tr.0.642; they either fall within the stable one-phase reg
or must separate into two coexisting phases.

V. CONCLUSIONS

We have applied the rigorous statistical mechanics of
ternally constrained ensembles to derive the equilibri
i-
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properties of a one-dimensional constrained hard rod fl
with and without an additional infinitely weak and infinitel
long-range attractive potential. We find that there are ad
tional contributions to the properties of constrained syste
that are not properly accounted for if the relations of unco
strained statistical mechanics are used.

We analyzed the effect of the severity of an internal co
straint, in which a limit is placed on the maximum allowe
distance between nearest-neighbor hard rods, on the equ
rium properties of the constrained hard rod fluid. The eq
tion of state of the hard rod fluid is extremely sensitive to t
severity of the constraint. This type of system, which alwa
exists at a positive pressure when unconstrained, is abl
exist under tension when a severe enough constraint is
plied. Within this negative pressure region, the hard rod fl
is anomalous, having a negative thermal expansion co
cient. In contrast, the unconstrained hard rod fluid always
a thermal expansion coefficient that is non-negative. The
ternal structure of the hard rod fluid is also significantly a
fected by the imposition of the constraint, which gives rise
discontinuities and long-range correlations in the radial d
tribution function. If an infinitely weak and infinitely long
ranged attractive potential is added, then the hard rod fl
exhibits a first-order vapor-liquid phase transition. For c
tain temperatures and severities of the constraint, the h
rod fluid is able to exist as an equilibrium mixture betwe
two phases that are under tension, an example of metas
phase equilibrium.

While the present work sheds light on the effect of co
straints on the behavior of the hard rod fluid, additional stu
ies of this idealized system should be pursued. For the
perheated liquid, one such study would be to constrain
the formation of voids, but of finite-density ‘‘bubbles.
Also, it would be instructive to constrain the formation
clusters in the supercooled vapor. Such analytical studie
idealized systems, coupled with computational investigati
of more realistic fluids@18,19,21# will be beneficial for an
improved understanding of the behavior of fluids outside
their normal range of thermodynamic stability.
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