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Statistical mechanics of fluids under internal constraints:
Rigorous results for the one-dimensional hard rod fluid
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The rigorous statistical mechanics of metastability requires the imposition of internal constraints that prevent
access to regions of phase space corresponding to inhomogeneous states. We derive exactly the Helmholtz
energy and equation of state of the one-dimensional hard rod fluid under the influence of an internal constraint
that places an upper bound on the distance between nearest-neighbor rods. This type of constraint is relevant
to the suppression of boiling in a superheated liquid. We determine the effects of this constraint upon the
thermophysical properties and internal structure of the hard rod fluid. By adding an infinitely weak and
infinitely long-ranged attractive potential to the hard core, the fluid exhibits a first-order vapor-liquid transition.
We determine exactly the equation of state of the one-dimensional superheated liquid and show that it exhibits
metastable phase equilibrium. We also derive statistical mechanical relations for the equation of state of a fluid
under the action of arbitrary constraints, and show the connection between the statistical mechanics of con-
strained and unconstrained ensemb|84.063-651X98)06804-4

PACS numbgs): 64.10:+h, 05.20-y, 05.70—a, 05.70.Fh

[. INTRODUCTION vapor phasesAn exception to this statement is given by the
idealized system of Refd12,13, which has an infinitely
If a liquid is heated above its boiling temperature at along-ranged attractive potential.
given pressure, while remaining homogeneous, it is said to In commonly used approximate theories, metastable states
be superheated. Likewise, a liquid is said to be supercoole@Ppear exclusively as a result of the mathematical approxi-
if, for example, it is cooled isobarically below its freezing Mations used to “solve” the partition function. For example,
point without crystallizing. These are examples of metastabld applying the maximum term methdd1], one generally
liquids, which play an important role in both nature and tech-S€€ks the homogeneo(single density that maximizes the

nology. Examples include sap ascent in trees under tensiddEneric term in the partition function. If the artificial con-
[1], supercooled water in cloudg], mineral inclusiong 3] straint of strict uniformity were removed, the maximum term

phase separation in polymer mixturgd, explosive boiling ”.‘ethOd’ which is_ exact in the thermodynamic limit, would
[5], cavitation in turbulent flow5,6], and the initial stage of yield only an equilibrium, inhomogeneous mixture of two or

sonoluminescence experiments involving cavitation, owing- > phases. Metastable and unstable states are thus ob-
; € exp 9 ' Yained in mean-field treatments, such as the Bragg-Williams
to ultrasonic excitatiori7]. In many of these cases, knowl-

. . or van der Waals theorigd1], by forcing the density to be
edge of the thermophysical properties of a metastable SySteQ?rictly uniform even inside the coexistence region.

is important. For example, the prevention of vapor explo- 5. there, therefore, rigorous ways of calculating the
sions[8-10] requires an accurate knowledge of the equationyperties of a metastable system? To answer this question,
of state of superheated liquids and their mixtures. we seek guidance from experiments. In the laboratory, the
Despite the importance and ubiquity of metastability, fun-way to study a metastable system is to constrain it so as to
damental questions remain concerning the development of @ake its lifetime much longer than the observation time. One
rigorous, microscopically based understanding of this phetechnique for accomplishing this consists of creating an
nomenor(3]. The application of conventional statistical me- emulsion of small droplets of a liquid in a second, immis-
chanics to the prediction of the properties of metastable syseible host liquid. This technique is commonly applied to
tems has an important limitation: a metastable state is nevestudy both supercooled and superheated liglddslS. The
a condition of maximum entropy for an isolated system, andsample liquid is carefully purified to remove suspended or
hence it is never the dominafénd, in the thermodynamic dissolved impurities that can trigger a phase transition. Sub-
limit, sole) contribution to the partition function. In the ther- division and purification will thus cause the number of drop-
modynamic limit, a rigorous evaluation of the partition func- lets to be large compared to the number of residual impuri-
tion within the coexistence region would yield no informa- ties. Therefore, a large fraction of the droplets can be
tion on metastable stat¢$1]. In fact, the partition function, maintained in metastable equilibrium. Furthermore, the ho-
if evaluated inside the coexistence region, would produce amogeneous nucleation rate is proportional to the sample’s
inhomogeneous state.g., equilibrium mixture of liquid and volume. Hence subdivision again facilitates extensive pen-
etration into the coexistence region. From this example we
conclude that a metastable system can be studied so long as
*Present address: Department of Chemistry and Biochemistryembryos of a new phase do not have enough time to form in
University of California at Los Angeles, Los Angeles, CA 90095. the course of an experiment. Therefore, in order to calculate
TAuthor to whom correspondence should be addressed. the properties of such a system rigorously, we must constrain
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the evaluation of the partition function so as to limit the rium properties and internal structure of the hard rod fluid. In
exploration of phase space to regions in which configurationSec. IV, we determine the equation of state of the one-
containing large enough nuclei of stable phases are absertimensional hard rod fluid with an infinitely weak and infi-
Generalizing, we say that the rigorous statistical mechanicgitely long-ranged attractive potential. We discuss the result-
of metastability is the statistical mechanics of constrainednd phase equilibrium properties and metastable states
systemg16]. Note that this rigorous, microscopic constraint Predicted by the model. In Sec. V we summarize and suggest
allows for density fluctuations, and is very different from the directions for future work.
assumption of strict uniformity inside the coexistence region.
Experimental constraints are kinetic, and they are aimed  Il. RIGOROUS RELATIONS FOR INTERNALLY

at avoiding nucleation. In statistical mechanics, the con- CONSTRAINED ENSEMBLES
s s Lme ndependent, anc ey conist o BOcknd in i secion we derve rigorous statstcal mechanica
doing, the system is contained within the appropriate One?&pressmns forthge equilibrium properties of con;tramed Sys-
phasé region of its phase space, despite being inside the fems, some of which were previously discussed in Ra].

' CPhese results are applicable not only to metastable systems

existenge region of its_p_hase dia_gram. However, the_ rigorougWhich are prevented from phase separatiogf to any sys-
evaluation of the partition function over limited regions of tem under the action of a constraint. In so doing, we derive

ﬁ:]]aigsistﬂzcg;(%é t[‘?orr'gf:)ir%Ll'S i'él%?sggnso;z mi;)nstrggnz equations that are in fact more general than the results of
p P gnly y 9., " conventional, unconstrained statistical mechanics, to which

[12,17). Computer §|mulat|ons, therefore, can play a.ve.rythey reduce in the limit of arbitrarily weak constraints.
useful role in the rigorous study of metastability. This is

because constraints are easily imposed in simulations. Thi In order to reformulate the canonical ensemble to obtain
o asily Imp - '"Retastable states, one must employ a mathematical device to
application of molecular simulations has only started to re-

! o , trap the system in the appropriate region of phase space. The
ceive the attention it ”?e”tse-g-' R‘?fs-[1?3—2]1>.- In the.se .activation barrier that must be surmounted before a meta-
references, the analytical constraints investigated in thi

work are studied computationally. by imposing limits on the%table state can phase separate corresponds to a bimodality of
size of voids that are zﬁlowed to %grrrilin zfsu egrheated i uiolthe canonical probability distribution. Within the coexistence

. .  SUper q region, this distribution is composed of two virtually distinct
In particular, Ref[20] discussed a one-dimensional system

albeit one in which attractions have a finite range. and nonoverlapping regions of phase space. The “bottle-

The analytical study of simple systems, however, is notneCk” region between them, corresponding to the appear-
. vt udy p'e Sy ’ ' =. “ance of a critical embryo within the metastable fluid, has a
without benefits. This is especially true when exact solutlon§

are possible. which allow one to investigate. without ap-C" probability of occupation, at least for small degrees of
P ' gate, P metastability. Thus the reformulation of the canonical en-

proximations, the effects of constraints on the thermodynaméemble requires the closing of the bottleneck via the imposi-

ics and structure of a model system. In this paper, we analyzt.on of a configurational constraint, trapping the system

?Sneees:ch S;zn;?lzez]s)yﬁen;{rttitagpe\,_v(:rggpesrlr?]?ﬁé Zigjctrlocirfgj'within the desired region of phase space. This constraint can
» €9 <<l). I p ' y be attained in principle by imposing an additional intermo-

effect of a particular constraint on its equilibrium propertles.Iecular or external potentidR4] on the system. This poten-

The one-dimensional hard rod fluid, however, does not €X5ial Wy, should vanish in the appropriate one-phase region of
hibit a first-order phase transition. Therefore, its usefulness N ppropric P! 9
) ; ; 7 ““Phase space, but becomes arbitrarily large in that part of
in understanding the properties of metastable liquids is lim:

: ! X . ; hase space that corresponds to the existence of two or more
ited. We are interested in analyzing the properties of a sys- . D

Co . . : hases in equilibrium.
tem that is inside the coexistence region and is prevente

: ) : The choice ofWy will be determined by the metastable
from phase separatingemains homogeneousy applica- hase of interest. In a supercooled vaplf, must become
tion of a suitable microscopic constraint. Upon addition of an” ' P

S S . : large if clusters beyond a given size develop. Likewisg,
mﬁmtgly wegk and infinitely ang—rar)g.ed attractive tail, the shguld serve to frugtrate thge formation of Iarge voids ‘g‘rﬁcavi-
one-dimensional hard rod fluid exhibits a first-order phase[ies within a superheated liqu[d9,21). Supercooled liquids
transition between a liquid phase and a vapor pHasg e

Therefore, we also derive the equation of state of a hard ro lrjrf]t genfree of large crystallites, Sy must prevent their
fluid with an infinitely weak and infinitely long-ranged at- 0 | ation. . f the f o ite th "
tractive potential, and determine exactly the ways in which fréspective of the form oWy, one can writé the partl-

the constraint influences the equilibrium properties of thellon function of a constrained system Bf particles, in a

one-dimensional superheated liquid volumeV (or its d-dimensional generalizatiprand at a tem-

The paper is organized as follows: in Sec. Il we derivePeratureT as follows[25]:
rigorous statistical mechanical relations for the equation of

- _ . ) Z(N,V,T)
state and chemical potential of a fluid under the action of a N.V.T)= 1
constraint. We find that the conventional, unconstrained sta- QIN.V.T) NIAIN @

tistical mechanical formalism is in fact a subset of the statis-
tical mechanics of constrained ensembles. In Sec. Il we obwhereA is the de Broglie wavelength arg{N,V,T) is the
tain the Helmholtz energy and equation of state of the oneconfigurational integral given by

dimensional constrained hard rod fluid in which a strict
upper bound is placed on the distance between nearest neigh-

=1 ... ~BONa— BW
bors. We discuss the effect of the constraint on the equilib- Z(NV.T) J J dry...drye e PN 2)
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in which 8=1/KkT, k is Boltzmann’s constant, and the inte- wherep=N/V, g(r) is the radial distribution function of the
gral overdr; spans the system volumé, is the instanta- constrained system, ard -) denotes ensemble averagiimg

neous configurational energy and is a function of all Bhe the constrained systenkEquation(5) is exact for pairwise
particle coordinates. Although the discussion is limited toadditive interactions,

atomic systems for simplicity, the generalization to molecu-

lar systems is straightforward.

Noting that the Helmholtz energh is equal to[25] <I>N=l 2 (1), (6)
<i<j=<
A(N,V,T)=—KkT InQ(N,V,T) 3
d where ¢(rj;) is the pair potential energy between atoms
an and j. Equation(5) is obtained in the usual waj25] by
(aA) (a InZ(N,V T)) rescaling the particle coordinates
P=—|5y| =KkTl——| . @
N T,N N T,N

s=V~ 1, ()
then the pressur is given by[21]
P 2 . SWe /N The integrations in Eq2) then span a unit cube imspace,
S P ' dr+ 8p2 N thereby allowing the volume derivatives required by E.
TP gkt | e (De(ndr+Bp 3 : : . e
0 [N to be carried out by the chain rule. The result is given by Eq.
(5) (5), in which[21]

1 1%
J;) dSNe—B(d)N+WN) (9_\/ WN(VlldSl.. .V]'/dSN)

®

o,

&p Jl dsl...Jl dsNe7B<¢‘N+WN)
0 0

The pressure of an unconstrained system would include onlthe distance between nearest neighbors in a one-dimensional
the first two terms in Eq(5), but g(r) would be evaluated hard rod fluid is prevented from exceeding some specified
with Wy=0. value, P.onstrain=0, and its magnitude can become quite
Equation (5) shows that the configurational constraint large for certain densities. Even though the internal structure
makes an additional contribution to the system pressure thaff this constrained hard rod fluid is dramatically altered,
is not present in unconstrained systems. Interestingly, th®,,,, is unable to account properly for the system pressure.
second, virial term in Eq(5) is not sufficient to determine At certain densitiesP ;onsiaindS the dominant contribution to
the pressure of the constrained system. This is so even if thihe pressure and, in fact, the total pressure becomes negative.
virial is dependent upon the structure of the constrained sysA/ithin a system composed of purely repulsive interactions,
tem through the radial distribution functiag(r), which is  the constraint manifests itself as an additional long-ranged
altered by the addition oWy . Consequently, there is an attraction, allowing the hard rod fluid to exist under tension.
additional microscopic contribution to the system pressure, The pressure is not the only thermodynamic variable
solely from the addition of a constraint, which is not com- which contains a term that is solely dependent upon the con-

pletely accounted for by the virial. straint. Due to the additional Boltzmann factor associated
Let us rewrite Eq(5) as follows: with Wy in the partition function, one realizes that other
statistical mechanical expressions must be modified to ac-
P = Pigeart Pviriai + Pconstraint (9 count for contributions from the constraint. For example, the
chemical potentiak of an unconstrained system is given by

in which Pidealzka’ [11]

2
P~ g |, o0 1o p=kTinpa%+p [ [Comgtrioar dz, a2
0JO

and
where ¢(r) is the intermolecular potential between two par-
) 2 (ﬁWN/N) (11) ticles separated by a distance and {(0<(¢=<1) is a cou-
constraint— £ ap oyl pling parameter. This parametésimply scales the strength
of interaction between a given particle and all other particles
The magnitude and sign & .,.qaintiS dependent upon the in the fluid by a factoi. In terms of this coupling parameter,
form of Wy . We will see in the following sections that when then,
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N [17] since we are limiting the range of distances between
CI)NzE {p(rqy)+ 2 o(ri;) (13 nearest neighbors, and should prevent the one-dimensional
=2 2<i<j=N liquid from boiling. The constraint used in R¢1.7] fixes the

where/( alters the magnitude of the interaction between parmean distance between neighbors, or the concentration of
. = . : holes, and hence is not severe enough to prevent cavitation.
ticle 1 and the remaininfyl— 1 particles. Note that particle 1 g P

: . The study of the effect of constraints on the properties of

is completely removed from the system whén 0, and is o harg rod fluid is not limited to the work of RefL7].

completely coupled o the remainirig—1 partlcle_s when Davis and co-workers studied the statistical mechanics of the

= 1. For a const_ramed system, the corresponding EXPre¥ne-dimensional hard rod fluid under the influence of exter-

sion for the chemical potential becomes nal fields[22], and used this as a model system to investigate

1 aWN> the properties of fluids confined within narrow pores. The
— ) d¢.

1 (o
pn=KT In pAd+pJ0 Jo $(r)g(r;¢)dr dZ+ JO< 37

application of an external field is equivalent to the imposition
of a constraint, but the nature of this constraint is quite dif-
(14 ferent from that used in the present wadnd in Ref[17]).

Th th ith th traints introd We impose an internal constraifite., one that depends on
us, as was the case wi € pressure, constraints INroAuge, o ative positions of the particlesas required by the

new terms, in addition to IMposing the need to evaluate ethysical situation we are interested in, metastability. The
isting terms in the constrained ensemble.

Carrvi tth | ipulatiof@s]. but in th constraint studied by Davis and co-workers is extefea.,
arrying out the usual manipulaliofiso], but now in the confining wallg, as befits the study of confined and inhomo-
presence of a constraint, it follows that the isothermal com

o . ’ geneous fluids.
pressibility k1, and the configurational enerdy, are for- 9

v identical to th di trained For a one-dimensional hard rod fluid in which the “diam-
mally identical 1o Ihe corresponding unconstrained expresgq ., (i.e., length of a particle isa, placing a limit on the

sions, except thay(r) is to be evaluated in the constrained distance between nearest neighbors corresponds to a con-

system: straintWy that can be written as follows:
*° N
KTk=1+ f ry—1]dr, 15
prIT P o[g( )1l a3 WN:kTiZl h(X;+1—X)), 17
Z_P j H(r)g(rydr . (16) vi/here_x, is pa_lrtlt_:lel s distance frqr_n the origin _a_lndN+1
N 2 Jo =X, (i.e., periodic boundary conditionsThe position of a
particle,x;, is that of its center of mass. For each configu-
Equation(16) is valid for pairwise additive interactions. ration of hard rods, the particles are labeled from 1Nto
according to their distance from the origir, . ;=Xx; for all
lll. ONE-DIMENSIONAL CONSTRAINED HARD ). The step functiom(x;.;—x;) is equal to
ROD FLUID [0, Xi1-x=la
A. Nature of the constraint h(Xi1=xi) = ©, X i1—X>la, (18)

s o o e St o et oyl 1. Thus, e engh betusen djacent ardros

a constrained system exactly. Since we are ultimately interl—'m'tEd to distances smaller or equal ta. In the limit |
. . i’ —oo, Wy vanishes, and the system becomes unconstrained.

ested in studying the properties of a metastable system, in

particular a superheated liquid, we require a constraint that

will prevent the liquid from boiling. This can be imple-

mented by preventing the liquid from sampling configura- If we haveN hard rods of lengtta in a “box” of length

tions that contain large voids. For a one-dimensional fluidL, held at a temperaturg, the Helmholtz energy can be

this is realized by placing a strict upper bound on the dis-written as

tance allowed between nearest neighbors.

Elkoshi, Reiss, and Hammeri¢h7] studied the effect of

a constraint on the properties of the one-dimensional hard

rod fluid. These authors analyzed the properties of the hard

rod fluid in which the concentration of holes was held fixed,whereZy is again the configurational integfdq. (2)] given

where the size of a “hole” was defined as the number ofby

additional hard rods which could be placed between nearest

. . . . . .. L L

nelghbors W|tr_10ut ove_rla_p_ and without qllsturbmg the origi- ZN:f f dxq ...dxye PPne AW, (20)

nal configuration. By limiting the total size of all holes al- 0 0

lowed to form, their “internally constrained” ensemble ex-

hibited dramatic structural changes and was able to exidh Which ®y is the total potential energy and/y is the

under tensior(i.e., negative pressureln contrast, the con- constraint®y is given by the sum of two-body interactions,

straint used in this work is better suited to study systems

which are metastable with respect to the formation of a new D= z ) B(Xi—X;), (22)

B. Derivation of the Helmholtz energy

(19

Zyn
A(N,L,T)I—kT In W,

phase. Our constraint is more restrictive than that of Ref. 1<i<j<
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where the summation runs over &l(N—1)/2 pairs, andp  whereA is now explicitly a function of, andX’ runs over

is the intermolecular potential between hard rodsdj, all possible choices of the set of numbgra satisfying Egs.
(24) and(25). The quantityuN is a result of the evaluation of

DX —X:)= ©, Xi—Xj<a 22 Z|, in terms of the quantura, where the integral is evaluated
o 0, x—x;=a. over the scaled coordinates,=x;/u, in which
The specific form oWy and® suggests that we evalu- dxN=uNd(x")N, 27)

ateZ, such that the particle labels are arranged in increasing
order from the origin. Therefore, the configurational integralyng o<x’<T.

Zy is simply NI Z{,, whereZy; is the configurational integral  gjince we are in the thermodynamic limit, we can replace

in which the particle coordinates are constrained to satisfy’ () by its maximum ternf2*. A clarification is needed at

0=<x;<Xp=---=<Xxy[26]. This transformation is not possible thjs point. The maximum term method, in which the partition

in higher dimensions. Following the method outlined in Ref.function is set equal to its largest contribution, is an approxi-

[17], Z|, can be evaluated if we discretize all the distancesmation that becomes exact in the thermodynamic lighit

between adjacent particles in terms of a quanwmwhich  _; | —: N/L=cons). The appearance of metastable

will become zero as we pass to the continuum limitis  states in approximate theories, such as the van der Waals

chosen such that the number of quanta in the leagtif a  equation, is not due to the use of the maximum term method

rod is simply an integew. Therefore,a=wu, and so the for the evaluation of a partition function. Rather, it is the

number of quanta in the lengthis given byI'=L/u. artificial imposition of a uniform density inside the coexist-
In order to describe a configuration, it suffices to knowence region that causes the appearance of these metastable

the distance between each nearest-neighbor pair. In what fodtates. The unconstrained evaluation of the partition function

lows we find it convenient to describe a configuration in lessinside the coexistence region would of course yield an inho-

detail, by focusing on the frequency of occurrence of nearestmogeneous equilibrium state even when the maximum term

neighbor separations of a given magnitude but not on theimethod is used.

location. We are interested, in other words, in the number of The equilibrium distribution ofy, u, that gives u€}*, is

nearest-neighbor distances having a particular length, but néherefore determined by maximizirg, with respect tag, u,

on the identities of the pairs that are so connected. In thisubject to the constraints in EqR4) and (25). Using the

spirit, let us denote by, u the number of intervals of length method of undetermined multipliers, we find that the set of

A between adjacent particles in a given configuration, wher@umbersg, u is given by

\ is the number of quanta between two particles. Thug,

is a linear density and becomes a differential length. Due gyu=Ka". (28

to the nature of the hard rod potential and the imposed con-

straint,\ is constrained to lie in the range<A <lw, where  We notice from Eq(28) that if K+0, thena<1, otherwise

la is the maximum allowed distance between nearest neighy, u would diverge as\— (i.e.,|—). The parameterk

bors[Eqg. (17)]. Each configuration which contributes I, and o are determined by substituting E@8) into Egs.(24)

can be characterized by a unique set of numiggis The  and(25). The sums are simple geometric series and are eas-

number of distinct arrangements corresponding to a particuty evaluated[27]. The results are as follows:

lar distribution ofg, u is given by

N(a—1)
0 (23 TPV 29
(gt
, . r L 1 lqod- D+l
where N in the numerator is simply the total number of — == P71~ RIS
spaces between the rods. However, any arbitrary choice of No Na 1-a 1-ea
the numbergy, u is not permissible. Since the total number a(1—a®(-D)
of spaces between the rods is fixed, we must have + — . (30
w(l_a)(l_a,w(l l)+l)
lw
AE g,u=N. (24) At this point, we pass to the continuum limit, allowingto

approach zero an@ to approach infinity. From Eq30) it
can be shown that itx does not differ from unity by an

Likewise, since the total length must be conserved, we "Cinfinitesimal amount, thet/Na will always be unity. Since

quire we know that a system of hard rods can be constructed for
low L/Na<1, then, in the continuum limite must be of the
z Mgyu)=T. (25) following form:
A=w
a=1—-e—1, (31

The Helmholtz energy now becomes

wheree is an infinitesimal. Thus
uNs’

AN

A(N,L,T:1)=—kT In (26)

a®=(1—¢€)’=e"¢, (32
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in which é=ew, ande ¢ is the limiting expression of® 28
when o goes to infinity whilee is infinitesimal. It will be
shown latefsee Eq(44)] that ¢ is a dimensionless pressure.
Substituting the above relations into E429) and (30), 20 | .
and lettingw— o (&= const) yields the final results
Neet sl |
K=o (33 % ‘
_Na £1—e 07Dy 34 < 1ol 10.0 |
P T v (lE+ e &1 34
where p is the number density and is completely deter-
mined oncep and! are specified ¢= ¢ p,1]). For an uncon- o8y ]
strained systeml (- «),
f pa (35) 0'Oo.o 0.3 0.4 0.6 0.8 1.0

l1-pa’ pa

FIG. 1. Density dependence of the difference in the Helmholtz
energy per particle between a constrained and unconstrained one-
dimensional hard rod system, for various values of the severity of
the constraint]. p is the number of rods per unit length,is the
length of a rod, and the maximum allowed distance between centers

<pa<l1. (36) of neighbor rods ida.

Since the distance between hard rods must lie wighand
la (I=1), the density is constrained to lie in the following
range:

—|

AA A(p,T,) A(p,T,|—x)

Equation (34) indicates that as¢—w, pa—1; and as

£——o, pa—1/. In the limit asé—0, pa—2/(1+1). KT kT kT
If we define a variablex such thatx=X\u, then Eq.(28) a[l—e &Y ¢(1-pa)
i ——in? P
can be rewritten as (1-pa)é pa :

(41)

g(x) gemtx-ala
= 1 3 . .y . . .
N a[l-e &3] S The imposition of the constraint causes an increase in the
Helmholtz energy, sincda/kT=0. Note thatAa/kT—0
wherex has units of length and is the distance between hargyr | — o as expected. Typical plots afa/kT for various
rods. Consequently, E437) is simply the probability den- yajues ofl are shown in Fig. 1. We see thaB/kT—0 for
sity distribution function that nearest neighbors are separategl_. 1, indicating that at the limit of close packing, where
by a distance, sinceg(x)/N has units of inverse length and yojds cannot form, the system is insensitive to the imposed
| | éx-a)la constraint and behaves as if it were unconstrained. On the
f 2909 j a_ge dx=1. (3 other hand, fopa— 1A, AG/KT—e. At this limiting den-
a N a a[l—e &1 ' sity, the system is stretched to the maximum limit allowed by
the constraint.
Finally, by substituting Eq(28) into Eq. (26), we obtain

the Helmholtz energy per particke C. Equation of state

A(N,L,T;l) @a(p,T;) a[l—e &Y The Helmholtz energy per particla, is an explicit func-
NKT kT In A tion of T, p, andl. Noting thafa [Eq. (39)] is also expressed
in terms of ¢, then its differential change can be written as
§(1-pa) ~ ~ ~
- (39 da da da &
pa da=|—=| dT+||—| +|== —| |dp
_ IT) 16 W1y 981, ,\9p),
wherea is now explicitly a function ofp, T and!l. If | _ _
i Ja Ja J
—oo, then the Helmholtz energy per particle becomes " o " P (a_lg) dl. 42)
ApT) _ | 1-pa 0 et e
= n - 1 . . —~
kT pA Using Eq.(39), it can be shown thati@/9¢)y,,,=0. There-
_ ) fore, the system pressukeis equal to
which equals the known result for an unconstrained hard rod
fluid in one dimension[26]. Thereforg, the difference in p FaIkT FaIKT
Helmholtz energy between a constrained system and an un- k—T=p2 P =p? p , (43
constrained system is P It P T1e
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FIG. 2. Equation of state of the one-dimensional hard rod fluid FIG. 3. Density dependence of the various contributions to the
for several choices of the severity of the constrdintNotation as  pressure fot=2.

per Fig. 1.
, , _ o (WNIN
which, together with Eq(39), yields P constraint P p . (49
T,N
Pa )
ﬁzg, (44)  Now, P is known exactly{Eq. (44)], and Pigea= pkT. Fur-

thermore, it will be shown in Sec. Il E that the radial distri-

bution function can be calculated exactly, and hence, through

Thus we immediately see that the pressure pf the constrainng_ (10), SO canP,;y . Therefore P yneraimcan be obtained
hard rod fluid can have values in the following range: exactly. We find that

—o< — <00, (45) Pconstraint_ _ plée” (=8
kT KT = 1-e &-D1

(50)

The pressure is zero whef=0, corresponding to a density which, from comparison with E¢37), is equivalent to
of pa=2/(1+1) [see Eq(34)]. For comparison, the pressure

of the unconstrained system is P i
= —plaPs(la’). (51)
a-Punc: pa (46)
KT 1-pa’ P.(x) is the probability density that nearest neighbors are

separated by a distancg which we saw in Sec. Ill B was
which is always greater than or equal to zero. As longias equal tog(x)/N [Eq. (37)]. Py(la™) signifies the limit of

finite, there is a range of densities P.(x) asx—la from the left. Since by definition of prob-
abilities P,(la”)=0, we conclude thaP ,nsain=0 at all
1 2 densities. Figure 3 shows a plot Bf ;psiraintVErsuspa for |

TSP (47 =2. Included in the plot is the total pressuRe and the

remaining contribution to the pressuyeat Pyiria - We see

in which the constrained hard rod fluid is under tension. Fignat for high densities, when the average intermolecular dis-

ure 2 shows some typical plots of the pressure versus densif§nCe iS much less than Peoqsraint=0. However, as the den-
for several choices of the constraint. The unconstrained sy$'YY approaches I/ the magnitude OP consyrainincreases and
tem, in which only repulsive interactions exist, can never?€cOmes the dominant contribution to the pressure. Since
exist at a negative pressure. As the constraint is weakenegideart Puiriai=0, it i PeonsiraintWhich is responsible for al-
(I becomes largér the properties of the constrained fluid lowing the hard rod fluid to exist under tensi6re., negative
approach those of the corresponding unconstrained systenP"€SSUre

It was shown in Sec. Il that the pressure of the constrained
system is the sum of three contributions D. Other thermodynamic variables

Since the Helmholtz energy is now a functionTgfL, N,

P=Pideart Puiriai + Pconstraine (48) andl, its differential change can be expressed as

in which dA=—SdT—PdL+ udN+ ydl, (52)
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whereS is the entropy,u the chemical potential, angl is 40
defined by 3.5 r\ unconstrained b
(aA) 53 1
X=\ o :
dl T,N,L 1
Using Eq.(39), we find that = |
% _ §e_ &(1-1) og |
NKT 1-e &~ Gy 2 _
w3 -
A decrease i, or an increase in the severity of the con- 1
straint, will always cause an increase in the value of the
Helmholtz energy. We see thgf NkT— —< as the density ]
approaches its minimum valuel 1/ i
Noting that the entropys is related toA by
%01 02z 03 04 05 06 07 08 08 1.0
dA pa
=—|== : (55)
al NLLI FIG. 4. Density dependence of the entropy of the one-
dimensional hard rod fluid for various values of the severity of the
one finds that constraint]. For each choice df, the entropy maximum occurs for
pa=2/(1+1). S°(T)/Nk=In A/a, which is a function of tempera-
S 1 t a[l—e ¢-1)] N &(1-pa) 56 ture only. Notation as per Fig. 1.
k-2 " A pa 0
SinceK1=0, one obtains the interesting result thet<0
Therefore, for £<0, or for Li<pa=<2/(1+1). In other words, the con-
strained hard rod fluid will expand when cooled isobarically
dSINk)  _[dS/Nk N dSINk 43 within this density range. In contrast, the thermal-expansion
dl dl ¢ dl coefficient of the unconstrained system is
T,p T,p,& T,p,l p
X Tap=1—pa=0 (63
= = P P '
NkT 0, 7)

indicating that the unconstrained system always contracts
when cooled isobarically.

Equation(63) also reveals that the entropy of the uncon-
strained system never exhibits a maximum with respect to
the density. However, this is not so for the constrained sys-
&P) ap tem[Eq.(61)]. For densities lower than 24 1), an increase

L,N,I

where it can be shown thd®@(S/NK)/dé]t ,=0. As ex-
pected, an increase in the severity of the constr@ntle-
crease irl) yields a decrease in the entropy.

Invoking a Maxwell relation
dS _ ; . ) -
(—) = (58)  in density causes an increase in entropy. At the minimum
L TN, allowed density, the hard particles are only allowed to exist
. o in a single conformatiofi.e., all particles are separated from
whereap andKy are the thermal expansion coefficient andeach other by a distance equal ltm). As the density in-

il Ky

isothermal compressibility, respectively, defined by creases, additional configurations become accessible and,
therefore, the entropy must increase. On the other hand, at

ap= l (ﬁ) (59) the limit of close packingga=1), the hard rods again have

L\aT) o\ only one allowed conformatiofi.e., all particles are in con-

tact, separated by a distanedrom one anothegr Therefore,

at some density between these two limits, the entropy must
Kr=—1 (0_P) : (600 reach a maximum, which, from E¢61), occurs when the
TN pressure is zero&=0) or at pa=2/(I+1). Figure 4 dis-

then we find, using Eq56), that plays a plot ofS/Nk versuspa for various values of.

( JdSIN k) —& 61 E. Radial distribution function
aip |1, ap”’ Restricting the maximum allowed distance between near-
est neighbors is equivalent to constraining the maximum size
and, therefore, of voids allowed in the hard rod fluid. We have already seen
how sensitive the thermophysical properties are to the size of
Tap 62) the maximum allowed void. We now consider the effect of

kTKs/a =¢ the constraint on the internal structure of the fluid.
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When the system is unconstraineld{=), the nearest- tially zero. Therefore, the constrained hard rod fluid is in fact

neighbor distribution functiofiEg. (37)] is given by “metastable” [17].
Using Eq.(65), it is possible to determine the distribution
aPy(x)= o (x-2)p/(1-pa) (64) function for the secc_)nd-nearest ngigh_ng(x). If the sys-
1 ' tem were unconstrained, théy(x) is simply[17]
in which x=a. However, when a limit is placed on the size 0, x<2a
of voids in the fluid, the nearest-neighbor distribution func- ‘ea
tion becomes P,(X)= f Pi(x—x")Py(x")dx’, 2asx<2la
a
—é(x—a)la
aPy(x)=4 1-e’¢ (65) (66)
0, x>la.

However, in the constrained systeri, can no longer range
The severe nature of the imposed constraint is evident by thisom a to x—a for any choice ofx. For example, if
immediate discontinuityfaP,(x)=0 for x>la], which is x>(l+1)a, thenx’, the distance between one pair of near-
imposed on the unconstrained nearest-neighbor distributioast neighbors, cannot equalsince the distance between the
function. Subsequently, if the constraint were eliminatedadjacent pair of nearest neighboxs; x’, would violate the
then the hard rod fluid would irreversibly move toward anconstraint, exceeding the maximum allowed valuela@f
unconstrained state; the probability that the system would, iThus, P, for the constrained system must be evaluated as
the future, return to its original constrained state is esserfollows:

0, x<2a
X—a
P,(x)= f P,(x=x")H(x—x"—la)P(x")H(x'—la)dx’, 2asx<2ja (67)
a
0, x>2la,
where
Hy—la)={ 1 Y= 68
y=1a)=1o, y>Ia. (68)
H ensures that the distances between nearest neighbors {6 #qever exceedm.
In general, thgth nearest-neighbor distribution functié)(x) is equal to
0, x<ja
X—a
Pi(x)= f Pi(x=x")H(x=x"—1a)P;_ (X" )H(X'—la)dx’, jasxs<jla (69
(j=Da
0, x>ja.

By repeated application of the convolution theorem for the The radial distribution functiom(x) is given by[17]
Laplace transform of Eq69), we find, witht=x—ja, that

P(t+ja)=L"L[Pi(t+a)H(t+a—1a)], (70 pg(><)=j§1 Pj(x), (73

in which £ denotes the Laplace transforii; ! the inverse

transform, and which is evaluated by repeated application of E&f). If we

let x* =x/a, thenP;(x) is given by
L[P(t+a)H(t+a—la)]

gje_‘f(X*_j)
m aP(X*) = =——gr7 =
=f0 e™P,(t+a)H(t+a—la)dt. (71 b e b
j! i
In arriving at Eq.(70), the following relation was used: x E (—D)" k'( —k)! [ = —k( =17
L[P;(t+]jla)]=0, (72 Xf[x*—j—k(I-1)] (74

where, by definitionP;(t+jla)=0 for t=0. for j<x*=<jl, in which
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FIG. 5. Radial distribution function of the one-dimensional hard ~ FIG. 6. Radial distribution function of the one-dimensional hard
rod fluid for pa=0.5. The pressure of the fluid with=3 is zero.  rod fluid for pa=0.5. The hard rod fluid is under tension for

Note that there is a discontinuity sta=5 andx/a=3 for|=5 and |=2.5. Note the initial positive slope for the curve for 2.5 and a
3, respectively. unc denotes the unconstrained fluid. corresponding discontinuity at/a=2.5. unc denotes the uncon-
strained fluid.
F(v) = 0, y<oO 5
(y)= 1, y=0. (79 ure 6 compareg(x*) for an unconstrained system with that

for a fluid under tensionl&2.5). For x* <2.5, the con-
Note that ad — only thek=0 term survives and we re- strained system has a pair correlation function with a positive
cover the correct radial distribution function of the uncon-slope, indicating net attraction between nearest neighbors

strained hard rod fluigi26], where when the system is under tension. Figure 6 also shows the
longer-ranged correlations that exist in the system under ten-

(pa)le=raX* —iA-pa) o sion. This illustrates how the constraint manifests itself as an

ab;(x*)= (1—pa)l(j—1)! [x*=j] (76)  additional potential of considerable range; correlations over

large distances, not seen in the unconstrained fluid, are

for x*=j. thereby created in a system with strictly short-ranged inter-

Figures 5 and 6 show plots g{x*) for various values of ~Molecular interactions.
| at a density opa= 3. The drastic effects of the constraint
on the fluid’s internal structure are clearly shown. ket*)

be defined as followsg=1KkT): IV. ONE-DIMENSIONAL CONSTRAINED HARD ROD

FLUID WITH ATTRACTIVE POTENTIAL

g(x*)=e BsX"), (77 Although the one-dimensional hard rod fluid is helpful in
understanding the equilibrium properties of constrained sys-

Thens(x*) is the potential of mean forc25], whose de- tems, it offers limited insight into the properties of systems
rivative yields the force between two hard rods located ahat are metastable with respect to a new phase. The one-
distancex* apart, averaged over all possible configurationsdimensional hard rod fluid, with or without constraints, does
of the other N—2 hard rods. Therefore, the slope of not exhibit a first-order phase transition. This system, how-
—kT In g(x*) is the mean force required to hold two par- ever, can be altered to reveal a first-order transition between
ticles fixed at a distancg*. Note thats(x*) is not just a a liquid phase and a vapor phase. If an infinitely weak and
function of the intermolecular forces between particles, buinfinitely long-ranged attractive potentig#8] is added to the
includes contributions of forces imparted to hard rods fromhard core, then the one-dimensional hard rod fluid will have
the imposition of the constraint. Figure 5 shogéx*) at  a two-phase region below a given temperaf@@. One can
pa=13 for | = (unconstraineyg | =5, andl = 3. Note that for  therefore limit the maximum size of voids in the hard rod
| =3 the pressure at this density is zero. We see thaxfor fluid, thereby preventing the superheated liquid from boiling,
<2 andl=3, g(x*) has zero slope. Therefore, hard rodsand determine the effect of the constraint on the equilibrium
separated by a distance less than two particle diameters exgnoperties of the metastable liquid phase. In addition, we
no net force on each other, a result not inconsistent with theompare the equation of state of the superheated liquid with
system having zero pressure. This is in contrast to the uncorhat predicted by mean-field theo(g.g., the van der Waals
strainedg(x*), which exhibits a negative slope in this inter- equation of stafe
val, indicative of the net repulsion between nearest neigh- Lebowitz and Penrosg23] derived the equation of state
bors. Note that the radial distribution function of eachof a system of identical particles interacting with a pair po-
constrained system exhibits a discontinuity wi&r=1. Fig-  tentialv(r) of the following form:
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v(r)=q(r)+y9o(yr), (78)  v¥>r, In(VIrY) ensures that there are always enough mol-
ecules in a subcell to make a violation of the uniformity

wherer =0, d is the dimensionality of the system, ag@r)  conditionp_<p<p, unlikely, guaranteeing that the rate of
is a hard-core potentiay®¢(yr) is the “Kac potential”  phase separation is small. The inequaligy > sup-
[28], which is always attractive, angl is inversely propor- presses phase transitions within a subcell, since the range of
tional to the range of the potential. They showed that in theattractions is now large with respect to the size of a subcell.
limit as the attractive potential becomes infinitely long The last inequalityV*®>y~*, ensures that we are dealing
ranged and, simultaneously, infinitely weak (—=), the  with the thermodynamic limit, which satisfies the condition
system’s Helmholtz energy per unit voluma=A/V, is that if the metastable state were to phase separate, it would

given by have a negligible probability of returning to its original state.
Note that Eq.(81) is more restrictive than Maxwell's pre-
a(p, T=E&Jfay(p,T)—ap?], (79 scription[13] for obtaining metastable states,
where ay(p,T) is the free energy density of the hard-core a5(p) — ap?>Eclag(p,T)—ap?],

fluid and « is a positive constant denoting the integrated
strength of the attractive potential, defined by 9%a, .
(9_[)2_ —2a>0, (83

&=—%7df $(yr)dr, (80

which allows the system to exist arbitrarily close to a limit of

, ) ) i . o thermodynamic stability where)P/dp)+=0 (i.e., spinodal

in which dr is a differential volume. The symbcﬂc indi- Due to the appearance ofwin Eq. (81), Penrose and Leb-
cates the convex envelope operator, or the maximal conveyyitz's requirements for metastability do not allow the sys-
function whose value nowhere exceeég(p,T)—ap_z. tem to approach the spinodal curve. In addition, there is a
Since a is positive [¢(yr)<0 for r>r,], the function |imjted range of subcritical temperatures in which EBf) is
ao(p,T)—ap® need not be convex even though(p,T)  satisfied. As will be shown below, the van der Waals equa-
must be. Determining the convex envelope of the Helmholtzjon of state obeys Penrose and Lebowitz’'s metastability
energy per unit volume is identical to performing Maxwell's ¢ondition only for T<0.765T. (supercooled vapdrand

equal-area construction. o T<0.642T, (superheated liquid where T, is the critical
So far we have only discussed the prescription for calcuemperature.

lating the phase equilibrium properties of the hard-core fluid
with an infinitely long-ranged attraction. In fact, Penrose and
Lebowitz [12,13 showed that this system can exist for a
very long time in a homogeneous state that is metastable The one-dimensional hard rod fluid exhibits a first-order
with respect to vapor-liquid phase separation. The proof inphase transition when a “Kac potential” is added to its hard
volves dividing the volum&/ into subcells of size. In order  core. The equation of state of the systenfvie are discuss-
not to violate the condition of homogeneity, the system ising phase equilibrium properties only

constrained to sample only those configurations in which the . . ~

density in each subcell falls within two boungs, andp. . a(p,T.)=C&claog(p, T,1) —ap?], (84)

If at a given density g_<p<p_.) the conditions

A. Phase equilibrium properties

whereay(p,T,l) is the free energy density of the constrained
ay(p)— ap®>Ec[ag(p, T)— ap?], hard rod fluid and is a function of the constraiht,If we
(81)  define a dimensionless temperatifeé=akT/a, a dimen-
A sionless densitp* =pa, andA* =A/a, then, upon substi-
(W;) —44>0 tuting Eq.(39) into Eq. (84), we find
. . . . 1-e ¢-D
are sausﬂecj, th(_an the system is metastable and will remain Sga* = £| — T* p* In —F T*E(1—p*)—(p* )2},
for a long time(i.e., a small escape ratePenrose and Leb- 3

owitz’s proof that the system can exist in a metastable state (89
is dependent upon the possibility of dividing the system into Ay A on )
the following length scales where a*=aa“/a. If the system becomes unconstrained
(I—0), then

Vs i sy CIn(V/rd) . (82 .

A -p
. . . . . . * = —T*p* INn ———T*p* — *2, 86
Equation(82), in which r, is the hard-core radius, is to be a*=f p=n A* p* pr = (%) (86)

interpreted in such a way that'd/y =t —o, 571/ 00,

and »*/r In(V/rﬂ)—»oo simultaneously. As before, the sepa- which is simply the van der Waals equation of state. The van
ration of the intermolecular potential into short-ranged andder Waals equation has a critical point Bt =5, p* =3,
arbitrarily long-ranged components enables one to define and P* =Pa?/ a= 4. It is convenient to reference the tem-
length scalev', with characteristics that we now discuss perature, pressure, and density of the constrained system to

[12,13. Since v is macroscopic, the inequalityy®  that of the unconstrained system. Thus let us define a re-
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FIG. 7. Equation of state of the constrained hard rod fluid with  FIG. 9. Temperature dependence of the critical valuk slich
an infinitely weak and infinitely long-ranged attractive potential for that a phase transition does not occur<ifl 4. . The dashed line
various values of the constraint, @ =0.5. The van der Waals is a numerical extrapolation of the datal{gj.,— 1. Notation as
equation is labeled vdw. Note that for valuesldbwer than 3.64, per Fig. 7.
the system does not exhibit a first-order phase transifon.p, ,
and.Tr denpte .tlje pressure, density, gnd temperature of the con- Pr:8§Tr_3pr21 (89)
strained fluid divided by the corresponding value of the same prop-

erty at the critical point of the unconstrained fluid. which, in the limitl —c, yields the familiar van der Waals

. . . equation of state
duced variableX, = X/X., which references the quantiy q

in the constrained hard rod fluid to its value at the critical

point for the unconstrained system. Rewriting E85) in P,(l—w)= 8Trp’_3pr2_ (89)
terms of these reduced variables yields 3=
A —8T,p, 1—-e -V 8T,&3-p,) p? Equation(89) is identical in form but not quite equivalent to
a*=¢&¢ a1 n AT E o1 “35 the van der Waals equation of state. The van der Waals equa-
87) tion is a mean-field expression and therefore yields states
that are thermodynamically unstablee., (9P/dp)+<0].
The reduced pressure then is simply qu_Ja'Fion(§39), in accordance With the convex envelope pre-
scription [i.e., Eqg. (87)], never yields unstable states. The
12.0 - convex envelope in Eq87) can also be determined by inte-
oo | ] grating Eq.(88) according to Maxwell’'s equal area construc-
’ tion.
8.0 - 1 Figures 7 and 8 show the reduced pressure as a function
6o L . of the reduced density for various valued ¢br T,=0.5 and
0.8, respectively. At these temperatures, the unconstrained
aor ] system exhibits a first-order phase transition. There is a
20 - aw . . temperature-dependent critical value I0f1 iica(T), such
ar 00 — unconstrained ] that the system may not phase separate if it is more severely
constrained(i.e., | <l iica). Above this critical value, the
20T 100 1 system exhibits a phase transition. AG¥| ;. but near
40 | . I eritical» the two coexisting phases are in equilibrium at nega-
6o | ] tive pressures. This is a rigorously derived example of meta-
stable phase equilibrium. Figure 9 shows a plot of the inverse
sor ] of | .iica @S @ function of the reduced temperature. We see
00| % 1=2.0 | that the curve divides the diagram into two distinct regions:
N phase equilibrium can only occur lit>1 isicar; if | <lgitical s
0.0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 20 2.2 24 26 on the other hand, the system does not exhibit a phase tran-

P sition at the given temperature. The temperature-density and

FIG. 8. Equation of state of the constrained hard rod fluid with Pressure-temperature projections of the phase diagram of the
an infinitely weak and infinitely long-ranged attractive potential for constrained hard rod fluid are shown in Figs. 10 and 11,
various values of the constraint, @ =0.8. The van der Waals respectively, for several values bf Within each phase en-
equation is labeled vdw. Notation as per Fig. 7. velope (Fig. 10, the system may phase separate; outside of
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FIG. 12. Reduced critical pressui® . as a function of the

FIG. 10. _Temp_erature-dens_ity projection Of_ the_ phase d_iagra%onstraint. The dashed line corresponds to the constraint at which
of the one-dimensional constrained hard rod fluid with attractive ta"the critical pressure is zero.

for various values of the constraitt, For a particular choice df,

the system does not exhibit a first-order phase transition for Valuegxistence of a superheated liquid, which can persist below

of the temperature and density outside of the corresponding phaiﬁe equilibrium pressure of the unconstrained system. Re-
envelope. The dot-dashed line is the predicted mean-field spinodal. :

Notation as per Fig. 7 gardless of the value of the constraint, the pressure of the
C constrained fluid equals that of the unconstrained system for
this region, the system only exists as a single phase. We sé¥fficiently high densities. For small values Igf <l cica),
from Fig. 11 that for certain values bthe hard rod fluid can the equation of state of the constrained hard rod fluid exhib-
only exhibit a first-order phase transition at a negative prest'S I.ower pressures, even for densities well W|th|_n the s'FabIe
sure. We can determine the rangel ah which coexistence r'egion. For constraints close tgiica, the constrained fluid
occurs between two phases under tension by plottingccurately predicts the pressure of the mean-field super-
the value of the reduced critical pressum, J[=P(l)/ eated liquid but eventually produces higher tensions as the
P.(1—)], versus the severity of the constraiht,! (see superheated liquid spinodal, as predicted by the van der
Fig. 12. For|<8.14, the entire vapor pressure curve of the'Vaals equation of state, is approached. On the other hand,
constrained hard rod fluid is under tension. for constraints less severe than the critical value, where
Figures 7 and 8 also include a van der Waals loop at eacBhase separation can occur, the equation of state of the con-

temperature. This mean-field equation of state predicts thatrained system represents the pressure of the mean-field su-
perheated liquid accurately up to the density at which the

2.0 e iRanassas s s constrained fluid phase-separates.

unconstrained JUSp—

B. Metastable states

] The constrained hard rod fluid with attractive potential

6.0 o can exist in a metastable state if the conditions given in Eq.
“4or // ] (81) are satisfied. Therefore, we are interested in comparing
60 | 7 1 the equation of state of various constrained systems with the
o 2o equation of state of the superheated liquid in the uncon-
80l s ] strained limit {(—«), and the mean-field equation of state
S (van der Waals equatignThe difference between the van
-100 [ //' . der Waals and unconstraineld{«) equations is that meta-
/ stability in the latter is defined by Eq. 81, and therefore it
2O s ] occurs only over a limited range of densities inside the co-
i existence region. In the van der Waals equation, on the other

140 L 1 hand, metastability occurs up to the spinodal curve. Both

oo L equations of state are identical in the stable region and over
701 02 03 04 05 06 07 08 0o 10 1t the range of conditions when E1) is satisfied.(In what
) follows, when we refer to the superheated liquid without
FIG. 11. Pressure-temperature projection of the vapor-liquidmaking reference to a constraint, we are talking about the
binodal of the one-dimensional constrained hard rod fluid with at-unconstrained superheated liquid.
tractive tail for various values of the constraiht,The dot-dashed To illustrate the consequences of Penrose and Lebowitz’s
line is the predicted mean-field spinodal. Notation as per Fig. 7. condition for the existence of metastabilitizqg. (81)], the
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FIG. 13. Temperature-density projection of the phase diagram 0.2
of the unconstrained hard rod fluid with attractive tail showing the
regions of metastability for the supercooled vapor and superheated Y RN
liquid. The regions of metastability are bounded by the binodal 1.0 12 14 16 1.8 20 22 24 26 28 30
(solid line) and the limit of metastabilitydot-dashed ling Equation P:

(81) is satisfied in this region. The vapor and liquid cannot become ) o )
metastable fofT,>0.765 andT,>0.642, respectively. For refer- FIG. 14. Temperature-density projection of the phase diagram

ence, the spinodal cuniep) of the van der Waals equation of state of the constrained hard rod fluid with attractive tail for various
is included. values of the constraint, Within each phase envelope, the solid

line indicates the limit of metastability, Im, defined by E§1). The

phase diagram of the unconstrained hard rod fluid with atgot-dashed line is the limit of stability of the unconstrained hard rod

tractive potential is shown in Fig. 13. The limit of metasta- fluid. Also shown is the mean-field superheated liquid spineal
bility is defined by the condition in which Ed81) is first
violated, or, equivalently,

( ap’) 6 (90)
= y 1.1
p, o Pr
1.0 !
and 0® 1
0.8 3
P,<P{{T,) superheated liquid o
P,>P®{(T,) supercooled vapor. (92) L0°

Beyond this limit it is no longer possible to define single-
phase states with macroscopic lifetin{d®]. Note that this
limit is not the same as the spinodal, where the system 0.3
reaches an absolute limit of stability. For the unconstrained 0.2
system, Eq(90) becomes

0.4

0.1

T =3p:(3—pp)2 (92) 00

. . . L L s L .
00 01 02 03 04 0.[5 06 07 08 09 10

Trl_ere is a maximum temperature for which Eg2) is sat- FIG. 15. The dependence of the critical temperaftop curve
isfied. Only for_Tr<0.765 can the vapor become SUPET- 5nd the maximum temperature at which the liquid reaches a limit of
cooled; the liquid can only be superheated 19r<0.642.  etastability(bottom curvé upon the severity of the constraint, for
Above these temperatures, the vapor and liquid cannot rene constrained hard rod fluid with attractive tail. The dashed lines
main metastable and must phase separate. The metastaglg extrapolations to~1—1. There is no phase transition in the
regions are therefore bounded by the binodal and the corrgegion labeled 1. For any value bfphase separation without meta-
sponding vapor and liquid limits of metastability. In Fig. 13, stability for the superheated liqujds defined by Eq81)] occurs in

the limit of metastability is shown as a dot-dashed line. Notehe dashed region; metastability is possible in the nondashed region
the contrast between the mean-field prediction, according tabeled 2.
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which metastable states can exist arbitrarily close to the critiproperties of a one-dimensional constrained hard rod fluid
cal point, and Eq(81), which predicts a subcritical upper with and without an additional infinitely weak and infinitely

limit to metastability. long-range attractive potential. We find that there are addi-
In the presence of a constraint, the limit of metastability istional contributions to the properties of constrained systems
determined by the condition that are not properly accounted for if the relations of uncon-
3 (ap strained statistical mechanics are used.
== pr(_’) , (93 We analyzed the effect of the severity of an internal con-
2 9, straint, in which a limit is placed on the maximum allowed

—_ . . . distance between nearest-neighbor hard rods, on the equilib-
which, is of course, a function of Figure 14 again displays 1, hroperties of the constrained hard rod fluid. The equa-
:Ez t:eomngter ;?rt:éf'ﬁgp dSItr)c/) dpq‘cl)d?;tx{:hogttt?:cﬁcgspeo;jel?E;TTOro[fon of state of the hard rod fluid is extremely sensitive to the

severity of the constraint. This type of system, which always

various values of the constrairt,(as in Fig. 10, but also . " . ,
. . . I . exists at a positive pressure when unconstrained, is able to
includes the predicted regions of metastability for various

values ofl. The locus of limits of metastability of the super- e>§|st unde_r ten_5|0n When a severe enpugh constraint Is ap-
heated liquid coincides with that of the unconstrained quid_p“ed' Within this negatwe pressure region, the harq rod fqu
for all choices ofl. The same is not true for the supercooled'sf anomalous, having a negative thermal expansion coeffi-

vapor. Within each superheated liquid region, the pressured€nt. In contrast, the unconstrained hard rod fluid always has
of each constrained fluid, if the corresponding value of the? thermal expansion coefficient that is non-negative. The in-
temperature and density fall inside a phase envelope, afgrnal structure of the hard rod fluid is also significantly af-
essentially identical. This conclusion cannot be drawn, infécted by the imposition of the constraint, which gives rise to
general, for values of in which the fluid is stabldi.e., the  discontinuities and long-range correlations in the radial dis-
chosen temperature and density lie outside the phase enviibution function. If an infinitely weak and infinitely long-
lope for the particular value df), since small values of  ranged attractive potential is added, then the hard rod fluid
show significant deviations from the equation of state of theexhibits a first-order vapor-liquid phase transition. For cer-
unconstrained systefie.g., Fig. 7. tain temperatures and severities of the constraint, the hard
Figure 15 shows the dependence of the size of the phased fluid is able to exist as an equilibrium mixture between
coexistence and liquid metastable regions on the severity afvo phases that are under tension, an example of metastable
the constraint. In the figure, the top curve shows how theyhase equilibrium.
critical temperature varies with the inverselofThe lower While the present work sheds light on the effect of con-
curve displays the highest temperature at which metastabilitytraints on the behavior of the hard rod fluid, additional stud-
is possible for the liquidi.e., Eq.(81) is satisfied as a func-  jes of this idealized system should be pursued. For the su-
tion of I"*. These two curves divide the figure into three perheated liquid, one such study would be to constrain not
distinct regions: a region in which only one phase is presenfhe formation of voids, but of finite-density “bubbles.”
(labeled 1, a region in which phase coexistence must ocCUa|sq it would be instructive to constrain the formation of
(dashed region labeled,2and a region in which the liquid = ¢,,qters in the supercooled vapor. Such analytical studies of

gay Ibecl;o?;]ethsuperheﬁte(?%n?as%ed (;eglon. I?beled)' 2. idealized systems, coupled with computational investigations
early, both the supernheated liquid and CoexISIENce TeGIONGy .16 realistic fluidg18,19,2] will be beneficial for an

decrease in size as the constraint becomes more severe..In . . . )
I ; . S improved understanding of the behavior of fluids outside of

addition, the highest temperature at which the liquid can exiheir normal range of thermodvnamic stabilit

ist in the superheated statbottom curve in Fig. 1bin- 9 y Y-

creases with. Therefore, the limiting temperature of super-

heating for the unconstrained systeh+{(=) defines a strict

upper bound for all constrained systems. Regardless of the ACKNOWLEDGMENTS
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